
> CURSO 061

> CONTROLADOR LÓGICO
PROGRAMABLE (PLC)

061
MICRO CAPACITACION

<

WWW.MICRO.COM.AR

<

Automación Micromecánica s.a.i.c
M. Moreno 6546 B1875BLR
Wilde . Buenos Aires . Argentina
micro@micro.com.ar . www.micro.com.ar

Tel. Ventas: 011 4227 0595 y líneas rotativas . Fax: 011 4206 6281
Conmutador: 0114206 6285 y líneas rotativas . Fax: 011 4206 0228

MICRO4

<

5PREFACIO

<

Las empresas que piensan en el futuro se encuentran provistas de modernos dispo-
sitivos electrónicos en sus máquinas y procesos de control. En la actualidad, las fábri-
cas automatizadas deben proporcionar en sus sistemas: alta confiabilidad, gran efi-
ciencia y flexibilidad. Una de las bases principales de dichas fábricas es un dispositi-
vo electrónico llamado Controlador Lógico Programable (PLC)

Hoy los Controladores Lógicos Programables son diseñados usando lo último en
diseño de microprocesadores y circuitería electrónica, esto proporciona una mayor
confiabilidad en su operación, así como también en las aplicaciones industriales
donde existen peligros ambientales: alta repetibilidad, elevadas temperaturas, ruido
ambiente o eléctrico, suministro de potencia eléctrica no confiable, vibraciones
mecánicas, entre otros.

Nuestra meta es enseñar el funcionamiento interno y la programación de este tipo de
controladores, asimismo exponer algunas de sus aplicaciones en la industria.

En MICRO, a través de los cursos de capacitación, pretendemos crear un espacio de
formación y entrenamiento en el área de la automatización industrial; para estudian-
tes, profesores, operadores, técnicos e ingenieros que decidan completar la propia
formación. El diseño del manual está elaborado con criterios eminentemente prácti-
cos, para facilitar un estudio ágil y actualizado de cada uno de los temas.

El objetivo de éste y de todos los cursos MICRO es ofrecer un sistema de aprendi-
zaje dinámico e interactivo de clases teórico-prácticas, en el cual el alumno avance en
la especialidad, ejecutando de una forma práctica los conocimientos desarrollados en
las clases teóricas. Siempre con una visión real y profesional, para aplicar estos cono-
cimientos a las necesidades de su empresa, tanto en el campo de mantenimiento,
como en el de producción.

Esperamos haber construido una herramienta que les permita apropiarse significati-
vamente del nuevo saber.

Para contribuir al logro de los objetivos reseñados, sus comentarios al final del curso
serán de inestimable utilidad.

Departamento de Capacitación
capacitacion@micro.com.ar
www.micro.com.ar

MICRO6

<

CURSO 061
Controlador Lógico Programable (PLC)

Conceptos básicos
Conceptos básicos. Definiciones
Campos de aplicación
Ventajas e inconvenientes
Reseña Histórica

Estructura de un PLC
Definición y descripción de los componentes de la estructura básica de un PLC

Clasificación
Cantidad de Entradas y Salidas
Estructura

Funcionamiento de un PLC
Tiempo de Barrido o “Scan time”
Modos de funcionamiento del controlador Twido
Comprobación del tiempo de ciclo
Iniciación del controlador
Evaluación

Hardware Twido
Presentación del producto
Principales características
Descripción
Referencias de productos
Dimensiones
Conexionado
Estructura de la memoria de usuario de un PLC Twido

Lenguajes de programación
Diagrama de Contactos o Lógica de Escalera
Listado de Instrucciones (mnemónico)
Diagramas de funciones
Texto estructurado
Grafcet

1
1 . 1

1 . 2

1 . 3

1 . 4

2
2 . 1

3
3 . 1

3 . 2

4
4 . 1

4 . 2

4 . 3

4 . 4

4 . 5

5
5 . 1

5 . 2

5 . 3

5 . 4

5 . 5

5 . 6

5 . 7

6
6 . 1

6 . 2

6 . 3

6 . 4

6 . 5

7INDICE

<
Instrucciones Tipo
Tratamiento Booleano
Introducción a los diagramas de Ladder Logic
Programas de Listado de Instrucciones
Programación y configuración de temporizadores
Bloque de función del contador progresivo/regresivo
Programación y configuración de contadores

Grafcet
Elementos Gráficos
Reglas de Evolución
Descripción de las instrucciones Grafcet para el autómata Twido
Descripción de la estructura del programa Grafcet
Acciones asociadas a pasos Grafcet
Grafcet a programar
Evaluación

Ejercicios

Material didáctico

7
7. 1

7. 2

7. 3

7. 4

7. 5

7. 6

8
8 . 1

8 . 2

8 . 3

8 . 4

8 . 5

8 . 6

8 . 7

9

1 0

8

Conceptos básicos

Introducción

El control automático, como actualmente lo conocemos, tiene su primer antecedente
en el Regulador de Watt, el famoso sistema que controlaba la velocidad de una turbi-
na de vapor en el año 1774. A partir de aquel regulador, se desarrollaron innumera-
bles aplicaciones prácticas.
Las industrias de procesos contiguos tuvieron sus primeras necesidades al requerir
mantener las variables de proceso en un determinado rango, a fin de lograr los obje-
tivos de diseño.
Las primeras industrias realizaban el control de las variables de forma manual, a tra-
vés de operadores que visualizaban el estado del proceso mediante indicadores ubi-
cados en las cañerías y/o recipientes y equipos.
El operador conocía el valor deseado de la variable a controlar, y en función del error
tomaba acciones correctivas sobre un elemento final de control a fin de minimizarlo.
Por supuesto, el control manual era descentralizado. Cuando las plantas de produc-
ción crecieron y se tornaron más complejas, se requirió cada vez mayor cantidad de
mano de obra.
El primer intento de reemplazar al hombre en las tareas de control se realizó a través
de elementos mecánicos. Mecanismos como las válvulas de control de nivel a flotan-
te permitieron al hombre dedicarse a estas tareas.
Sin embargo, el hecho de que el elemento mecánico de control estuviera ubicado
directamente sobre el proceso, mantenía la obligación de ir al campo para conocer el
verdadero estado de las variables, así como dejaba expuesto al medio ambiente a ele-
mentos de regulación delicados.
A medida que las plantas crecían, fue surgiendo la necesidad de tener más información
en forma ordenada y accesible. De esta forma, comenzaron aparecer los primeros table-
ros de control, muchas veces ubicados cerca de los equipos de proceso, y con frecuen-
cia transportando la variable a medir hasta el indicador instalado en el panel.

Conceptos básicos. Definiciones

¿Qué es un PLC?

Según lo define la Asociación Nacional de Fabricantes Eléctricos de los Estados
Unidos un PLC – Programable Logic Controller (Controlador Lógico Programable) es
un dispositivo digital electrónico con una memoria programable para el almacena-
miento de instrucciones, permitiendo la implementación de funciones específicas
como ser: lógicas, secuenciales, temporizadas, de conteo y aritméticas; con el objeto
de controlar máquinas y procesos.
También se puede definir como un equipo electrónico, el cual realiza la ejecución de
un programa de forma cíclica. La ejecución del programa puede ser interrumpida
momentáneamente para realizar otras tareas consideradas más prioritarias, pero el
aspecto más importante es la garantía de ejecución completa del programa principal.
Estos controladores son utilizados en ambientes industriales donde la decisión y la
acción deben ser tomadas en forma muy rápida, para responder en tiempo real.
Los PLC son utilizados donde se requieran tanto controles lógicos como secuencia-
les o ambos a la vez.

1

1 . 1

9CONCEPTOS BASICOS

< <

Campos de aplicación

El PLC por sus especiales características de diseño tiene un campo de aplicación
muy extenso. La constante evolución del hardware y software amplía constantemen-
te este campo, para poder satisfacer las necesidades que se detectan en el espectro
de sus posibilidades reales.
Su utilización se da fundamentalmente en aquellas instalaciones en donde es nece-
sario un proceso de maniobra, control y señalización. Por tanto, su aplicación abarca
desde procesos de fabricación industriales de cualquier tipo a transformaciones
industriales, o control de instalaciones, entre otras.
Sus reducidas dimensiones, la extremada facilidad de su montaje, la posibilidad de
almacenar los programas para su posterior y rápida utilización, la modificación o alte-
ración de los mismos, hace que su eficacia se aprecie principalmente en procesos en
que se producen necesidades tales como:

• Espacio reducido
• Procesos de producción periódicamente cambiantes
• Procesos secuenciales
• Maquinaria de procesos variables
• Instalaciones de procesos complejos y amplios
• Chequeo de programación centralizada de las partes del proceso

Ejemplos de aplicaciones generales:

• Maniobra de máquinas
• Maquinaria industrial de plástico
• Máquinas transfer
• Maquinaria de embalajes
• Maniobra de instalaciones: instalación de aire acondicionado, calefacción
• Instalaciones de seguridad
• Señalización y control

Ventajas e inconvenientes

Sabemos que no todos los autómatas ofrecen las mismas ventajas sobre la lógica
cableada, ello es debido, principalmente, a la variedad de modelos existentes en el
mercado y las innovaciones técnicas que surgen constantemente. Tales consideracio-
nes obligan a referirse a las ventajas que proporciona un autómata de tipo medio.

Ventajas

• Menor tiempo empleado en la elaboración de proyectos, debido a que no es
necesario dibujar previamente el esquema de contactos, es preciso simplificar las
ecuaciones lógicas, ya que por lo general la capacidad de almacenamiento del
módulo de memoria es lo suficientemente grande.

• La lista de materiales queda sensiblemente reducida, y al elaborar el presupuesto
correspondiente eliminaremos parte del problema que supone el contar con
diferentes proveedores, distintos plazos de entrega.

• Posibilidad de introducir modificaciones sin cambiar el cableado ni añadir aparatos.
• Mínimo espacio del tablero donde se instala el autómata programable.
• Menor costo de mano de obra de la instalación.
• Economía de mantenimiento. Además de aumentar la fiabilidad del sistema, al eli-

minar contactos móviles, los mismos autómatas pueden indicar y detectar averías.

1 . 2

1 . 3

1

MICRO10

<

1 . 4

• Posibilidad de gobernar varias máquinas con un mismo autómata.
• Menor tiempo para la puesta en funcionamiento del proceso al quedar reducido

el tiempo de cableado.
• Si por alguna razón la máquina queda fuera de servicio, el autómata sigue siendo

útil para otra máquina o sistema de producción.

Inconvenientes

• Como inconvenientes podríamos hablar, en primer lugar, de que hace falta un
programador, lo que obliga a adiestrar a uno de los técnicos en tal sentido. Esta
capacitación puede ser tomada en distintos cursos, inclusive en universidades.

• El costo inicial.

Reseña Histórica

Los PLC fueron introducidos a fines de los años 60. La razón de su aparición fue la
necesidad de eliminar los complicados y costosos sistemas de control de máquinas
basados en relés. Bedfor Associates propuso algo llamado Controlador Modular
Digital (MODICON) a la General Motors. Al mismo tiempo, otras compañías propusie-
ron esquemas basados en computadoras, uno de los cuales fue PKP-8. El MODI-
COM 084 llegó a ser el primer PLC en producción a escala comercial.
Cuando hay cambios en los requerimientos de producción, éstos involucran al siste-
ma de control. Estas modificaciones llegan a ser muy caras si los cambios requeridos
son frecuentes. Debido a que los relés son aparatos mecánicos, éstos tienen una vida
limitada que obliga a apegarse a estrictos programas de mantenimiento. El encontrar
las fallas en uno de estos sistemas, es una tarea complicada cuando involucra una
cantidad importante de relés.
Estos nuevos controladores debían ser fáciles de programar por los ingenieros de
mantenimiento o de planta. También debían ser capaces de funcionar en los agresi-
vos ambientes industriales. La forma de lograr esto fue usar técnicas de programa-
ción con las que los programadores estaban familiarizados y reemplazar los relés
mecánicos con elementos electrónicos de estado sólido.
A mediados de los años 70 los PLC comenzaron a tener habilidades de comunica-
ción. El primer sistema de comunicación fue el MODBUS de MODICON. Ahora los
controladores se podían comunicar entre sí para coordinar el accionar de un conjun-
to de máquinas. También se les agregaron capacidades de transmitir y recibir voltajes
variables que le permitían recibir señales analógicas. Desdichadamente, la carencia
de estandarización en estos sistemas, unido a los protocolos y redes físicas, originó
la decadencia de su aplicación.
Durante los años 80 se apreció un intento por estandarizar las comunicaciones con
el protocolo de automatización de manufactura de la General Motors (MAP) Al mismo
tiempo, se tendió a la miniaturización de los equipos y la utilización de lenguajes sim-
bólicos de programación en computadoras personales o programadoras portátiles.
Hoy en día los PLC más pequeños son de tamaño de un sólo relé.
En los 90 se ha visto una reducción gradual en la introducción de protocolos nuevos,
y la modernización de las capas físicas de algunos de los protocolos más populares
que sobrevivieron a los años 80. El último modelo ha tratado de reunir los lenguajes
de los PLC bajo un estándar internacional único.
Ahora se cuenta con controladores programables con función de diagramas de blo-
ques, lista de instrucciones, lenguajes de programación C o texto estructurado, todo
al mismo tiempo. También se ha visto que se están introduciendo computadoras per-
sonales para reemplazar en algunas aplicaciones específicas a los PLC. Es el caso de
la General Motors, que ha llevado sus sistemas a control basado en computadoras.

11

Definición y descripción de los componentes de la estructura básica
de un PLC

Procesador: es el “cerebro” del PLC, el responsable de la ejecución del programa
desarrollado por el usuario.

Tareas Principales:

• Ejecutar el programa realizado por el usuario.
• Administración de la comunicación entre el dispositivo de programación y la

memoria, y entre el microprocesador y los bornes de entrada/ salida.
• Ejecutar los programas de autodiagnósticos.

2

2 . 1

2 . 1 . 1

Estructura de un PLC

Introducción

La estructura básica de un PLC está compuesta por:

• La CPU.
• Las interfases de entradas.
• Las interfases de salidas.

Esta estructura se puede observar en la figura siguiente:

2 . 1 . 2

MICRO12

<

Para poder realizar todas estas tareas, el procesador necesita un programa escrito
por el fabricante, llamado sistema operativo. Este programa no es accesible por el
usuario y se encuentra grabado en una memoria que no pierde la información ante la
ausencia de alimentación, es decir, en una memoria no volátil.

Memoria

Los PLC tienen que ser capaces de almacenar y retirar información, para ello cuen-
tan con memorias. Las memorias son miles de cientos de localizaciones donde la
información puede ser almacenada. Estas localizaciones están muy bien organizadas.
En las memorias el PLC debe ser capaz de almacenar:

Datos del Proceso:

• Señales de entradas y salidas.
• Variables internas, de bit y de palabra.
• Datos alfanuméricos y constantes.

Datos de Control

• Instrucciones de usuario, programa.
• Configuración del autómata.

Tanto el sistema operativo como el programa de aplicación, las tablas o registros de
entradas/ salidas y los registros de variables o bits internos están asociados a distin-
tos tipos de memoria.
La capacidad de almacenamiento de una memoria suele cuantificarse en bits, bytes
(grupo de 8 bits), o words (grupo de 16 bits)

Un bit es una posición de memoria que puede tomar valor “0” ó “1”:

Un byte son 8 posiciones de memoria agrupadas:

Una palabra o word son 16 posiciones de memoria agrupadas:

El sistema operativo viene grabado por el fabricante. Como debe permanecer inalte-
rado y el usuario no debe tener acceso a él, se guarda en una memoria como las ROM
(Read Only Memory), que son memorias cuyo contenido no se puede alterar inclusi-
ve con ausencia de alimentación.

13ESTRUCTURA DE UN PLC

< <

Los bornes de conexión de los PLC tienen la misma identificación que la dirección de
los registros. Por ejemplo, los bornes de la entrada 001 están relacionados con el
lugar de la memoria de datos que se encuentra en la palabra 00, bit 01.
Como puede verse, esta codificación asigna a una única entrada o salida, una termi-
nal y consecuentemente un dispositivo de entrada o salida.

• Memoria del usuario:
Es la memoria utilizada para guardar el programa.
El programa construido por el usuario debe permanecer estable durante el fun-
cionamiento del equipo, además debe ser fácil de leer, escribir o borrar. Por eso
es que se usa para su almacenamiento memorias tipo RAM, o EEPROM. A estas
memorias se la llama memoria del usuario o memoria de programa. En el caso de
usar memorias tipo RAM será necesario también el uso de pilas, ya que este tipo
de memoria se borra con la ausencia de alimentación. En el caso de usar memo-
rias EEPROM la información no se pierde al quitar la alimentación.

Tipos de memoria

• La memoria de datos:
También llamada tabla de registros, se utiliza tanto para grabar datos necesarios
a los fines de la ejecución del programa, como para almacenar datos durante su
ejecución y/o retenerlos luego de haber terminado la aplicación. Este tipo de
memorias contiene la información sobre el estado presente de los dispositivos de
entrada y salida. Si un cambio ocurre en los dispositivos de entrada o salida, ese
cambio será registrado inmediatamente en esta memoria.
En resumen, esta memoria es capaz de guardar información originada en el
microprocesador incluyendo: tiempos, unidades de conteo y relés internos.

En la figura que sigue se puede ver como los terminales de entrada o de salida están relacionados
con una localización específica en el registro de entradas/ salidas.

2

2 . 1 . 3

MICRO14

<

RECUERDE que...
La velocidad con que se pueden escribir y leer el estado de las entradas y salidas
juega un papel importante en la velocidad de operación del PLC, por tal motivo para
guardar esta información se utilizan memorias tipo RAM (Random Access Memory)
que son muy rápidas.

Entradas y salidas

Dispositivos de entrada
Los dispositivos de entrada y salida son aquellos equipos que intercambian (o enví-
an) señales con el PLC.
Cada dispositivo de entrada es utilizado para conocer una condición particular de su
entorno, como temperatura, presión, posición, entre otras.

Entre estos dispositivos podemos encontrar:

• Sensores inductivos magnéticos, ópticos, pulsadores, termocuplas, termoresisten-
cias, encoders, etc.

Dispositivos de salida
Los dispositivos de salida son aquellos que responden a las señales que reciben del
PLC, cambiando o modificando su entorno.

Entre los dispositivos típicos de salida podemos hallar:

• Contactores de motor
• Electroválvulas
• Indicadores luminosos o simples relés

Generalmente los dispositivos de entrada, los de salida y el microprocesador trabajan
en diferentes niveles de tensión y corriente. En este caso las señales que entran y
salen del PLC deben ser acondicionadas a las tensiones y corrientes que maneja el
microprocesador, para que éste las pueda reconocer. Ésta es la tarea de las interfa-
ses o módulos de entrada o salida.
Las entradas se pueden clasificar en:

Entradas Digitales: también llamadas binarias u “on-off”, son las que pueden tomar
sólo dos estados: encendido o apagado, estado lógico 1 ó 0.
Los módulos de entradas digitales trabajan con señales de tensión. Cuando por un
borne de entrada llega tensión, se interpreta como “1” y cuando llega cero tensión se
interpreta como “0”. Existen módulos o interfases de entradas de corriente continua
para tensiones de 5, 12, 24 ó 48 Vcc y otros para tensión de110 ó 220 Vca.

Los PLC modernos tienen módulos de entrada que permiten conectar dispositivos
con salida PNP o NPN en forma indistinta. La diferencia entre dispositivos con sali-
da PNP o NPN es como la carga (en este caso la carga es la entrada del PLC) está
conectada con respecto al neutro o al positivo.

15ESTRUCTURA DE UN PLC 2

< <

Esquema de cableado de entradas de común negativo de CC de un PLC TWIDO

Esquema de cableado de entradas de común positivo de CC de un PLC TWIDO

RECUERDE que...
Las señales digitales en contraste con las señales analógicas no varían en forma con-
tinua, sino que cambian en pasos o en incrementos discretos en su rango. La mayo-
ría de las señales digitales utilizan códigos binarios o de dos estados.
Las entradas discretas, tanto las de la corriente continua como las de la corriente alter-
na, están compuestas por una estructura típica que se puede separar en varios bloques:

Entrada de común positivo o negativo estándar

MICRO16

<

• Rectificador: en el caso de una entra-
da de corriente alterna, convierte la
señal en continua. En el caso de una
señal de corriente continua, impide
daños por inversión de polaridad.

• Acondicionador de señal: elimina los
ruidos eléctricos, detecta los niveles
de señal para los cuales conmuta el
estado lógico, y lleva la tensión al
nivel manejado por la CPU.

• Indicador de estado: en la mayoría de
los PLC existe un indicador luminoso
por cada entrada. Este indicador (casi
siempre un LED) se encenderá con la
presencia de tensión en la entrada y
se apagará en caso contrario.

• Aislación: en la mayoría de los PLC
las entradas se encuentran aisladas
para que, en caso de sobretensiones
externas, el daño causado no afecte
más que a esa entrada, sin perjudicar
el resto del PLC.

• Circuito lógico de entrada: es el encargado de informar a la CPU el estado de la
entrada cuando éste lo interrogue.

Cuando la señal llega hasta los bornes del PLC tiene que atravesar todos estos blo-
ques. Recorrer este camino le lleva un tiempo que es llamado: tiempo de respues-
ta de la entrada.
Un aspecto a analizar es el mínimo tiempo de permanencia o ausencia de una señal
requerido para que el PLC la interprete como 0 ó 1. Si una variable de proceso pasa
al estado lógico 1, y retorna al estado 0 en un tiempo inferior al tiempo de respuesta
de la entrada, es posible que le PLC no llegue a leerla.

Ejemplo
Si una tarjeta tuviera un tiempo de respuesta de 10 mseg, no sería capaz de iden-
tificar con certeza una señal que presentó un pulso de menos mseg. Para aquellos
casos en que se produzca esta situación, se requiere tarjetas con capacidad de
retención, en las que el estado lógico es sostenido por un período mayor que la
duración del pulso de señal.

17ESTRUCTURA DE UN PLC 2

< <

Entradas Analógicas: estos módulos o interfases admiten como señal de entrada
valores de tensión o corriente intermedios dentro de un rango, que puede ser de 4-
20 mA, 0-5 VDC o 0-10 VDC, convirtiéndola en un número. Este número es guarda-
do en una posición de la memoria del PLC.
Los módulos de entradas analógicas son los encargados de traducir una señal de
tensión o corriente proveniente de un sensor de temperatura, velocidad, aceleración,
presión, posición, o cualquier otra magnitud física que se quiera medir en un número
para que el PLC la pueda interpretar. En particular es el conversor analógico digital
(A/D) el encargado de realizar esta tarea.
Una entrada analógica con un conversor A/D de 8 bits podrá dividir el rango de la
señal de entrada en 256 valores (28)

Ejemplo
Si la señal de entrada es de una corriente entre 4 y 20 mA la resolución será de
(20-4)/256 = 0.0625 mA. Recordemos que se define como resolución al mínimo
cambio que un conversor puede discriminar en su entrada. Si el conversor A/D
fuera de 12 bits se podrá dividir el rango de la señal de entrada en 4096 valores
(212), con lo que se logra una resolución para una señal de 4-20 mA de (20-
4)/4096= 0,0039 mA.

En la medida que el conversor A/D tenga mayor número de bits será capaz de ver o
reconocer variaciones más pequeñas de la magnitud física que estamos observando.

Los módulos de salida digital permiten al autómata programable actuar sobre ele-
mentos que admitan órdenes de tipo prendido - apagado, todo o nada u “on - off”.
El valor binario de las salidas digitales se convierte en la apertura o cierre de un relé
interno del autómata, en el caso de módulos de salidas a relé.
Existe una gran cantidad de módulos de salida discreta, todos ellos con la misma
estructura que se presenta a continuación.

RECUERDE que...
Una señal es analógica cuando las magnitudes de la misma se representan median-
te variables continuas, análogas (relación de semejanza entre cosas distintas) a las
magnitudes que dan lugar a la generación de esta señal.

• Circuitos lógicos de salida: es el receptor de la
información enviada por la CPU.

• Aislación: cumple la misma función que en las
interfases de entrada.

• Indicador de estado: también tiene la misma
función que en la entrada.

• Circuitos de conexión: esta compuesto por el
elemento de salida al campo que maneja la
carga conectada por el usuario. Existen tres
tipos de circuitos de conexión que se describirán
más adelante.

• Protección: son internas al PLC y pueden ser
fusibles en serie con los contactos de salida,
alguna protección electrónica por sobrecarga,
o algún circuito RC. Recordar que en caso
de que más de una salida use un solo borne
de referencia, es éste el que lleva asociada la
protección. Por lo cual si esta protección actúa
dejarán de funcionar todas las salidas asociadas
a ese borne común.

Tiempo de respuesta de la salida: al igual que en las entradas, se denomina tiem-
po de respuesta de la salida al tiempo que tarda una señal para pasar por todos los
bloques. Existen cuatro posibilidades para el circuito de conexión de una salida:

1. Salida a relé:
Es una de las más usuales. Con ellos es posible conectar tanto cargas de corriente
alterna como continua. Suelen soportar hasta 2A de corriente. Una buena práctica en
la instalación es verificar que la corriente máxima que consume la carga esté dentro
de las especificaciones de la salida del PLC.
Los tiempos de conmutación de estos tipos de salidas llegan a los 10 mseg. tanto
para la conexión como para la desconexión. Algunas cargas son muy problemáticas,
por ejemplo las cargas inductivas, que tienen la tendencia a devolver corriente al cir-
cuito cuando son conectadas. Siendo la corriente estimada en unas 30 veces a la
corriente de consumo nominal. Esto genera picos de voltaje que pueden dañar la sali-
da a la que esta conectada la carga. Para minimizar estos riesgos se utilizan común-
mente diodos, varistores u otros circuitos de protección.

Contacto de salidas de relé

MICRO18

<

Los relés son internos al PLC. El circuito típico es el que se muestra en la figura de
arriba. Cuando el programa active una salida, el PLC aplicará internamente tensión a
la bobina del relé. Esta tensión hará que se cierren los contactos de dicho relé. En ese
momento una corriente externa pasará a través de esos contactos y así se alimenta-
rá la carga. Cuando el programa desactiva una salida, el PLC desactiva la bobina
abriendo así los contactos.

2. Salidas a transistor:
Sólo son capaces de operar con corriente continua, de baja potencia (hasta 0,5 A)
Pero tienen tiempos de conmutación que rondan el milisegundo y una vida útil mucho
mayor que la de los relés. En este tipo de salida el transistor es el encargado de
conectar la carga externa cuando el programa lo indique.

Esquema de cableado

19ESTRUCTURA DE UN PLC 2

< <

Modelo de cableado de salidas de relé
y de alimentación de CA de un TWIDO

Contacto de salidas
de común positivo de transistor

2 . 1 . 4

2 . 1 . 5

MICRO20

<

3. Salidas por triac:
Manejan corrientes alternas. Al igual que los transistores, por ser semiconductores tie-
nen una vida útil mucho mayor que la del relé, que es un elemento electromecánico.

4. Salidas analógicas:
Los módulos de salida analógica permiten que el valor de una variable numérica inter-
na del autómata se convierta en tensión o corriente.

Internamente en el PLC se realiza una conversión digital analógica (D/A), puesto que
el autómata sólo trabaja con señales digitales. Esta conversión se realiza con una pre-
cisión o resolución determinada (número de bits) y en un intervalo determinado de
tiempo (período muestreo)
Esta tensión o intensidad puede servir de referencia de mando para actuadores que
admitan mando analógico, como pueden ser las válvulas proporcionales, los variado-
res de velocidad, las etapas de los tiristores de los hornos, los reguladores de tempe-
ratura, etc. Permitiendo al autómata realizar funciones de regulación y control de pro-
cesos continuos.

Alimentación

La fuente de alimentación proporciona las tensiones necesarias para el funciona-
miento de los distintos circuitos del sistema.
La alimentación a la CPU frecuentemente es de 24 Vcc, o de 110/220 Vca. En cual-
quier caso es la propia CPU la que alimenta las interfaces conectadas a través del
bus interno.
La alimentación a los circuitos E/S puede realizarse, en alterna a 48/110/220 Vca
o en continua a 12/24/48 Vcc.

Equipos o Unidades de programación

El autómata debe disponer de alguna forma de programación, la cual se suele reali-
zar empleando algunos de los siguientes elementos:

• Unidad de programación
Suele ser en forma de calculadora. Es la forma básica de programar el autómata, y se
suele reservar para pequeñas modificaciones del programa o la lectura de datos en
el lugar de colocación del autómata.

21ESTRUCTURA DE UN PLC 2

< <

• Consola de programación
Es un terminal a modo de ordenador que proporciona una forma más favorable de
realizar el programa de usuario y observar parámetros internos del autómata.
Obsoleto actualmente.

• PC
Es la forma más cómoda empleada en la actualidad. Permite programar desde un
ordenador personal estándar, con todo lo que ello supone: herramientas más poten-
tes, posibilidad de almacenamiento en soporte magnético, impresión, transferencia de
datos, monitorización mediante software SCADA, entre otros.

Para cada caso el fabricante proporciona lo necesario, el equipo o el software y/o los
cables adecuados. Cada equipo, dependiendo del modelo y del fabricante, puede
poseer una conexión a uno o varios de los elementos anteriores.

3

3 . 1

3 . 2

22

Clasificación

Introducción

El parámetro indicador que habitualmente define un PLC es la clasificación por can-
tidad de entradas y salidas (E/S), a pesar de su arbitrariedad.
Los fabricantes ofrecen características tales como: la capacidad de memoria, opera-
ciones aritméticas, en directa relación a la cantidad de entradas y salidas que el con-
trolador puede manejar.
Así, por ejemplo, suele haber una directa relación entre la clasificación de PLC como
integrales, y los clasificados como micro PLC por la cantidad de E/S.

Cantidad de Entradas y Salidas

Una de las clasificaciones más comunes de los PLC hace referencia en forma direc-
ta a la cantidad de entradas y salidas (E/S o I/O) de un PLC y nos dice que un PLC
es considerado micro PLC cuando tienen menos de 64 E/S, pequeños cuando tie-
nen menos de 256 E/S, medianos cuando tienen menos de 1024 E/S y grandes
cuando tienen más de 1024 E/S.

Estructura

Otras de las clasificaciones que se suelen hacer con respecto a los PLC son por su
construcción. Estos pueden ser compactos o modulares.
Un PLC es compacto cuando todas sus partes se encuentran en la misma caja, com-
partimiento o chasis.

Los PLC compactos suelen ser los más baratos y pequeños, pero tienen la desven-
taja de sólo poder ampliarse con muy pocos módulos.
Un PLC es modular cuando se pude componer o armar en un bastidor o base de
montaje, sobre el cual se instalan la CPU, los módulos de entradas/salidas y los
módulos de comunicaciones si fueran necesarios, entre otros.

23CLASIFICACIÓN 3

< <

La principal ventaja de un PLC modular es que el usuario puede componer su equi-
po como sea necesario, y luego puede ampliarlo si su aplicación lo requiere. También
suelen poseer instrucciones más complejas, un lenguaje de programación más poten-
te y posibilidades de comunicaciones.
La desventaja es que suele ser un poco más caro y voluminoso que el integral.
Algunos módulos de E/S tienen forma de tarjetas con una bornera en el frente y un
conector macho en su parte posterior. A estos módulos muchas veces se los deno-
mina tarjetas de entradas y/o salidas. Estos módulos o tarjetas existen con distintos
números de entradas y/o salidas. Podemos encontrar entre 4, 8, o 16, puntos de
entradas y/o salidas en la misma tarjeta. Algunas empresas tienen módulos de alta
densidad con 32 o más puntos de E/S.
Algunos PLC modulares tienen en sus tarjetas o módulos las borneras desmontables.
Esto es particularmente útil en caso de tener que reemplazar algunos de los módu-
los. Pues no será necesario recablear las entradas o salidas.

Funcionamiento de un PLC

Introducción

En la mayoría de los PLC (Autómata Programable o Controladores Lógicos
Programables) el funcionamiento es de tipo cíclico y secuencial, es decir, que las ope-
raciones tienen lugar una tras otra, y se van repitiendo continuamente mientras el
autómata está bajo tensión.

Tiempo de Barrido o “Scan Time”

Tiempo de Barrido o Scan Time: es el tiempo que demanda al PLC completar un
ciclo. A cada ciclo de tareas se lo denomina Barrido o Scan.
Una típica secuencia se detalla a continuación:

• Autodiagnóstico: el autodiagnóstico se realiza cuando el PLC es conectado a
tensión y es una verificación de todos sus circuitos. Si existiera algún problema el
PLC emitiría alguna señal luminosa indicando el tipo de error que ha detectado.

• Lectura del registro de entradas y creación de una imagen de las entradas en la
memoria: el PLC revisa cada entrada para determinar si está encendida o apaga-
da (entrada binaria o de dos estados) Revisa las entradas desde la primera a la
última, graba estos estados en la memoria creando la imagen de las entradas
para ser utilizada en el paso siguiente.

• Lectura y ejecución del programa: acudiendo a la imagen de las entradas y sali-
das en memoria, la CPU ejecuta el programa realizado por el usuario. La ejecu-
ción del programa se realiza instrucción por instrucción y en el orden en que se
determinó. Como ya se ha revisado el estado de las entradas, el programa puede
tomar decisiones basado en los valores que fueron guardados. Las decisiones
que toma el programa, en última instancia, corresponden a los valores que van a
tomar cada una de las salidas, estos valores son almacenados en registros para
ser utilizados en la etapa final.

• Atención de las comunicaciones.

• Actualización del registro de salidas: renovación de todas las salidas, en forma
simultánea, en función de la imagen de las mismas, obtenidas al final de la ejecu-
ción del programa.

Los fabricantes en general dan el tiempo de barrido para ejecutar 1K (1024) de ins-
trucciones de lógica booleana. Sin embargo, al no estar normalizados el tipo de ins-
trucciones a utilizar en el ensayo, el dato no alcanza para comparar distintos PLC.
Puede darse el caso de que un PLC ejecute un cierto tipo instrucciones más rápido
que otro o viceversa. Para determinar en forma certera el tiempo de barrido se requie-
re la determinación del tiempo que le insume al procesador le ejecución de cada una
de las instrucciones utilizadas, así como el tiempo consumido por las demás funcio-
nes que ejecuta la CPU.

4

4 . 1

24

25FUNCIONAMIENTO DE UN PLC 4

< <

Ciclo de funcionamiento

Existen dos posibilidades en cuanto al ciclo de ejecución, que el autómata esté en
RUN o en STOP.
En cada uno de estos casos el autómata se comporta de la siguiente manera:

• Autómata en RUN: el procesador ejecuta el tratamiento interno, la confirmación
de entradas, el tratamiento del programa y la actualización de las salidas.

• Autómata en STOP: en este caso no se ejecuta el tratamiento del programa.

En la mayoría de los PLC existe un indicador luminoso en la parte frontal con la leyen-
da de RUN, que nos muestra cuando el microprocesador está ejecutando el progra-
ma. Cuando este indicador se encuentra en apagado el controlador no está ejecutan-
do el programa o bien se encuentra en modo Stop.
Otro indicador luminoso, con la leyenda de ERROR, nos muestra cuando se ha
encontrado una falla en la etapa de autodiagnóstico. En la mayoría de los casos cuan-
do se detecta un error se detiene automáticamente la ejecución del programa.

Modos de funcionamiento del controlador Twido

El ciclo de ejecución o tareas del autómata se puede realizar de dos maneras:

• Ejecución Normal (exploración cíclica), configurada por defecto.
• Ejecución Periódica.

Ejecución Normal (cíclica)
Por defecto, el ciclo de tareas del autómata se ejecuta en forma cíclica de la siguien-
te manera:

4 . 1 . 1

4 . 2

Terminado el ciclo de ejecución actual, el autómata comienza inmediatamente con
uno nuevo.

MICRO26

<

En el inicio del ciclo del autómata, un temporizador de programa se ajusta al valor
definido en configuración. El ciclo del autómata debe finalizar antes de que expire
este temporizador. Al final del ciclo del temporizador, se inicia el siguiente. Si el tiem-
po del ciclo supera al tiempo programado, el bit del sistema (%S19) pasará a 1. La
comprobación y reinicio a 0 correrán a cargo del programa del usuario.

Desbordamiento del tiempo de ejecución

La duración del tiempo de ejecución del programa usuario es controlada por el autóma-
ta (watch dog) y no debe superar los 150ms. En caso contrario, aparecerá un fallo que
provocará la parada inmediata del autómata (indicadores RUN y ERR intermitentes)

Desbordamiento del tiempo de ejecución

El temporizador watchdog del controlador supervisa el tiempo de ciclo del programa
del usuario. Éste no debe exceder los 150 ms, ya que de lo contrario se producirá un
fallo que provoque la detención inmediata del controlador en modo de parada o stop.
Las salidas en este modo se fuerzan a su estado de retorno predeterminado.

Casos posibles de funcionamiento:

• Tiempo de ciclo < watch dog: el funcionamiento es normal, una vez finalizado el
ciclo, se inicia el siguiente.

• Tiempo de ciclo > watch dog: el autómata pasa a STOP, los indicadores RUN y
ERR parpadean y el bit del sistema %S11 pasa a 1.

Ejecución periódica

En este caso, la lectura de las entradas, el tratamiento del programa y la actualización
de las salidas se realizan de forma periódica, según un tiempo definido por el usuario
durante la configuración (2 a 150ms), tal como se indica en la figura siguiente:

27FUNCIONAMIENTO DE UN PLC 4

< <

4 . 3

Casos posibles de funcionamiento:

• Tiempo de ciclo < período: funcionamiento normal, el ciclo siguiente se inicia una
vez alcanzado el final del período programado.

• Período < tiempo de ciclo < watch dog: el sistema pone el bit de sistema %S19
en estado 1 y el ajuste al estado 0 depende del programa usuario. El autómata-
permanece en RUN.

• Tiempo de ciclo > watch dog: el autómata pasa a STOP, los indicadores RUN y
ERR parpadean y el bit de sistema %S11 pasa a 1.

Comprobación del tiempo de ciclo

El ciclo de tarea master se controla mediante un temporizador watchdog, llamado
Tmax (duración máxima del ciclo de tarea master)
Permite mostrar errores de aplicación (bucles infinitos, etc.) y garantiza una duración
máxima para actualizar las salidas.

WatchDog del software (operación periódica o cíclica)

En una operación periódica o cíclica, la activación del watchdog provoca un error del
software. La aplicación pasa a estado de pausa y establece el bit %S11 a 1. La nueva
ejecución de la tarea necesita una conexión a Twido Soft con el fin de analizar la
causa del error, la modificación de la aplicación para corregir el error y la nueva eje-
cución de las solicitudes de inicio y ejecución.

Comprobación de la operación periódica

En una operación periódica, se utiliza una comprobación adicional para detectar el
período que se está excediendo:

• %S19 indica que se ha superado el período. Se establece a 1 por el sistema
cuando el tiempo de ciclo es mayor que el período de la tarea o por el usuario.

• %SW0 contiene el valor del periodo (0-150 ms), es decir, comienza a partir de
un inicio en frío mediante el valor establecido en la configuración. El usuario
puede modificarlo.

Uso del tiempo de ejecución de la tarea master

Las siguientes palabras del sistema se utilizan para ofrecer información sobre el tiem-
po de ciclo de exploración del controlador:

• %SW11 se inicia con el tiempo de vigilancia máximo de watchdog (10 a 500 ms)
• %SW30 contiene el tiempo de ejecución para el último ciclo de exploración

del controlador.
• %SW31 contiene el tiempo de ejecución para el ciclo de exploración del

controlador más largo.
• %SW32 contiene el tiempo de ejecución para el ciclo de exploración del

controlador más corto.

MICRO28

<

Distintos tipos de reinicio de alimentación detectados por el sistema

RECUERDE que...
El contexto se guarda en una memoria RAM mantenida con batería. Durante el arran-
que, el sistema comprueba el estado de la batería y el contexto guardado, y decide si
puede producirse un arranque en caliente.

Uso de un reinicio en caliente. Causa de un reinicio en caliente

Un inicio en caliente puede producirse:

• Cuando se restaura la alimentación sin pérdida de contexto de las aplicaciones.
• Cuando el programa establece el bit %S1 a estado 1.
• Desde la visualización del operador, cuando el controlador está en modo de

detención.

El dibujo que aparece a continuación describe una operación de reinicio en caliente,
en modo de ejecución.

RECUERDE que...
El estado de pausa se produce cuando la aplicación se detiene inmediatamente, debi-
do a un error del software de la aplicación, como un desborde de ciclo.
Los datos conservan los valores actuales que permiten un análisis de la causa del
error. Todas las tareas se detienen en la instrucción actual.
Está disponible la comunicación con el controlador.

La ilustración que aparece a continuación muestra los distintos tipos de reinicio de
alimentación detectados por el sistema. Si la duración del corte de corriente es infe-
rior al tiempo de filtrado de suministro de alimentación (unos 10 ms para el suminis-
tro de corriente alterna o 1 ms para el suministro de corriente continua), el programa
no lo advierte y sigue funcionando con normalidad.

29FUNCIONAMIENTO DE UN PLC 4

< <

Reinicio de la ejecución del programa
En la tabla siguiente se describen las fases de reinicio para ejecutar un programa
después de un reinicio en caliente.

Fase Descripción

1

La ejecución del programa se reanuda a partir del mismo elemento donde estaba antes
el corte de alimentación, sin actualizar las salidas.
Nota: sólo se reinicia el mismo elemento del código de usuario.
El código del sistema (por ejemplo, la actualización de salidas) no se reinicia.

2

Al final del ciclo de reinicio, el sistema:
• Elimina la reserva de la aplicación si se reservó

(y hace que la aplicación se detenga en caso de depuración)
• Reinicia los mensajes.

3

El sistema realiza un ciclo de reinicio en el que:
• Ejecuta de nuevo la tarea con los bits %S1 (indicador de reinicio en frío)

y %S13 (primer ciclo en ejecución) ajustados a 1.
• Restablece los bits %S1 y %S13 a 0 al final de este primer ciclo de tarea.

Procesamiento de un inicio en caliente
En caso de un inicio en caliente, si es necesario un proceso de aplicación determina-
do, el bit %S1 debe comprobarse al comienzo del ciclo de tarea y debe llamarse al
programa correspondiente.

Salidas después de un fallo de alimentación
Tan pronto como se detecta un fallo de alimentación, las salidas se ponen a un esta-
do de recaída (predeterminado) de 0. Cuando se recupera la alimentación, las salidas
permanecen con el último estado hasta que la tarea las actualice de nuevo.

Comportamiento ante un inicio en frío. Causas de un inicio en frío

Un inicio en frío puede producirse:

• Al cargar una aplicación nueva en la RAM.
• Cuando se restaura la alimentación con pérdida de contexto de las aplicaciones.
• Cuando el programa ajusta el bit %S0 a estado 1.
• Desde el monitor de operación, cuando el controlador está en modo de detención.

RECUERDE que...
Los controladores compactos siempre arrancan en frío. Los controladores modulares
siempre se reinician en caliente.

El dibujo de abajo describe una operación de reinicio en frío en modo de ejecución.

MICRO30

<

Operación
En la tabla siguiente se describen las fases de reinicio para ejecutar un programa
después de un reinicio en frío.

31FUNCIONAMIENTO DE UN PLC 4

< <

4 . 4

Fase Descripción

1

Durante el arranque, el controlador está en modo de ejecución.
Durante un reinicio en frío tras una detención debida a un ERROR, el sistema fuerza
se reinicia en frío.
La ejecución del programa se reinicia al comienzo del ciclo.

2

El sistema:
• Restablece las palabras y los bits internos y las imágenes de E/S a 0.
• Inicio de las palabras y los bits de sistema.
• Inicio de los bloques de función de los datos de configuración.

3

Durante este primer ciclo de reinicio, el sistema:
• Ejecuta de nuevo la tarea con los bits %S0 (indicador de reinicio en frío) y %S13

(primer ciclo en ejecución) ajustados a 1.
• Restablece los bits %S0 y %S13 a 0 al final de este primer ciclo de tarea.

Procesamiento de un inicio en frío
En caso de inicio en frío, si se requiere un proceso de aplicación particular, se debe
verificar el bit %S0 (que permanece a 1) durante el primer ciclo de la tarea.

Salidas después de un fallo de alimentación
Tan pronto como se detecta un fallo de alimentación, las salidas se ponen a un esta-
do de recaída (predeterminado) de 0. Cuando se recupera la alimentación, las salidas
permanecen a 0 hasta que la tarea las actualice de nuevo.

Iniciación del controlador

Los controladores se pueden iniciar mediante TwidoSoft ajustando los bits de siste-
ma %S0 (reinicio en frío) y %S1 (reinicio en caliente)

• Comienzo de inicio en frío: para realizar un comienzo de inicio en frío, el bit de
sistema %S0 se debe ajustar a 1.

• Comienzo de inicio en caliente mediante %S0 y %S1: para realizar un comienzo
de inicio en caliente, los bits de sistema %S1 y %S0 se deben ajustar a 1.

El siguiente ejemplo explica cómo programar un reinicio en caliente mediante los bits
de sistema:

LD %S1 Si %S1 = 1 (reinicio en caliente), ajuste %S0 a 1 para el inicio del controlador.
ST %S0 el sistema restablece a 0 estos dos bits al final del ciclo siguiente.

• Inicio en caliente mediante el comando INIT

También se puede solicitar el inicio en caliente mediante un comando INIT. El coman-
do INIT envía al controlador al estado IDLE, el reinicio de los datos de aplicación y
el estado de la tarea al estado STOPPED.

RECUERDE que...
No debe ajustar %S0 a 1 durante más de un ciclo del controlador.

Evaluación

1. ¿En qué tipo de instalaciones se utiliza los PLC? ¿Por qué?

2. Comenta algunas ventajas e inconvenientes de los autómatas.

3. ¿Por qué diferentes unidades o partes está compuesto el autómata?

4. ¿Qué función desempeña la CPU dentro del autómata?

5. ¿Qué función desempeñan las fuentes de alimentación dentro
del autómata programable?

6. ¿Qué tipos de interfaces existen?

7. ¿Qué tipos de entradas existen? Explicar.

8. ¿Qué es lo que almacena las memorias internas? ¿De que tipo es?

9. ¿Qué es lo que almacena la memoria de programa? ¿De que tipo es?

10. ¿De que procesos está compuesto el ciclo de funcionamiento?

11. ¿Que es el tiempo de ejecución? ¿De que depende dicho tiempo?

MICRO32

<

4 . 5

33

5

5 . 1

5 . 1 . 1

Hardware Twido

Introducción

El trabajo con los autómatas necesita un software para su funcionamiento. El softwa-
re a utilizar se elegirá en función del hardware instalado y del nivel de las aplicacio-
nes a realizar.

Presentación del producto

El autómata Twido surge del desarrollo conjunto entre
Modicon y Telemecanique, marcas de Schneider Electric
y especialistas en autómatas programables industriales
(PLC). Dedicado a la automatización de instalaciones
industriales simples y de máquinas pequeñas, Twido se
encuentra disponible en dos versiones: compacto y
modular. Comparten opcionales, extensiones de E/S y
el software de programación, otorgándole máxima flexibilidad y simplicidad de uso.
Tiene dimensiones reducidas y con una puesta en marcha muy sencilla, dispone de
dos formas de programación:

a. Lenguaje lista de instrucciones «list»

b. Lenguaje a contactos «ladder»

Twido permite, además, la creación de páginas GRAFCET, facilitando la programación
de procesos secuenciales.
La programación se efectúa con la ayuda de una PC, con el software TwidoSoft.

Twido Compacto

Para optimizar tiempos costos en la instalación, el Twido compacto está disponible en
tres tallas: 10, 16 y 24 E/S, este último con la posibilidad de ser ampliado, incorpo-
rándole módulos de entradas o salidas digitales o analógicas. La alimentación del
modelo compacto es en corriente alterna (100 – 240 Vca), posee entradas de 24
Vcc, y salidas a relé.

5 . 1 . 2

5 . 2

MICRO34

<

Principales características

Mayor flexibilidad para componer un autómata programable acorde a su
necesidad:
• Con sus 6 modelos de CPU compactas y modulares, Twido le ofrece múltiples

posibilidades para resolver su automatismo.
• Gracias a una gran variedad de módulos, usted puede encontrar exactamente

lo que necesita en aplicaciones estándar de 10 a 100 E/S.
• Ya sea si necesita un reloj calendario o un 2° puerto serie, etc. Twido le ofrece

un amplio abanico de opciones. Evalúe su necesidad y utilice lo estrictamente
necesario.

Mayor comunicación:
• Posibilidad de un 2° puerto serie opcional para los Twido compactos y modulares

(en estos últimos a través de los módulos de comunicación)
• Cada CPU Twido compacto o modular puede extenderse con otras con:

- E/S descentralizadas, en este caso en las bases no pueden adicionarse
módulos de extensión de E/S.
- Twidos conectados como CPU´s, en este caso en las bases pueden
adicionarse módulos de extensión de E/S.
- Cada Twido tiene su propio programa de aplicación y tiene reservadas cuatro
palabras de entradas (%INW) y cuatro de salidas (%QNW) para intercambiar
datos entre los Twidos.

Twido Modular

Para soluciones hechas a medida, maximizando la eficiencia de las máquinas, el Twido
modular está disponible en dos tallas: 20 y 40 E/S. La alimentación del modelo
modular es en 24 Vcc, y posee entradas de 24 Vcc y salidas transistores, a relés o
mixtas (transistores + relé) Además, cada Twido modular trae de base una entrada
analógica de 0 a 10 Vcc.

35HARDWARE TWIDO 5

< <

- Hasta 7 Twidos pueden conectarse a un Twido compacto o modular.
La distancia máxima del Bus RS485 es 200 m. Pueden utilizarse tanto los
puertos integrados como los opcionales.

• Twido comunicado en Modbus. Puede integrarse fácilmente a los equipos
existentes en campo como ser: otros autómatas programables, variadores de
velocidad, monitores de circuito, arrancadores suaves, etc.

Más posibilidades de ajuste de parámetros:
• El visualizador de 4 botones puede ser utilizado para realizar los ajustes básicos

directamente sobre el controlador.

Más simplicidad para ganar tiempo y disponibilidad:
• Fácil de cablear

- Twido le propone una gran variedad de conexiones:
- Soluciones con borneras a tornillo (extraíbles o fijas)
- Soluciones pre-cableadas para una conexión rápida y confiable
(conectores HE10, Twido Fast)
- Soluciones de E/S remotas u otras CPU´s remotas (hasta 50 m)
- Nuevas borneras a resorte, asociando un cableado rápido y una

conexión segura.
• Fácil de ensamblar

- Con un simple ”click”, podrá agregar las extensiones y/o los opcionales
que necesite.

• Fácil de instalar
- Su pequeño tamaño facilita la integración en los tableros.

• Fácil de aprender

Mayor capacidad:
• Con el opcional reloj calendario.
• Con memoria suplementaria de 32 y 64 k, permitiendo una rápida puesta en

marcha a distancia de su aplicación.
• Con las siguientes funciones integradas:

- Contadores rápidos (5 y 20 kHz)
- Posicionamiento con funciones PLS (generador de pulsos)
y PWM (modulación de ancho de pulso) en los Twido Modulares
(2 salidas configurables)
- 1E analógica integrada, en tensión (0-10VCC) en todas las CPU´s
Twido Modular.
- Potenciómetros analógicos.

Mayor compatibilidad para garantizar funcionamiento sin costos extra

MICRO36

<

El más pequeño y poderoso entre sus pares

Imagine un autómata programable de 40 E/S y numerosas funciones integradas,
todo en un tamaño no mayor a una tarjeta personal. Twido, supera todo lo imaginado.

Twido. Sinergia total con los productos Schneider Electric.

37HARDWARE TWIDO 5

< <

5 . 3 Descripción

Twido compacto

Referencias

1. Orificio de montaje.
2. Cubierta de terminales.
3. Tapa con bisagra.
4. Cubierta extraíble del conector de visualización del operador.
5. Conector de ampliación - sólo en el controlador TWDLCAA24DRF.
6. Terminales de alimentación de sensores.
7. Puerto serie 1.
8. Potenciómetros analógicos - TWDLCAA10DRF y TWDLCAA16DRF tienen uno.
9. Conector de puerto serie 2 - TWDLCAA10DRF no tiene ninguno.
10. Terminales de fuentes de alimentación de 100 a 240 V CA.
11. Conector de cartuchos - ubicado en la parte inferior del controlador.
12. Terminales de entrada.
13. LED.
14. Terminales de salida.

Twido Modular

Referencias

1. Tapa con bisagra.
2. Conector de ampliación.
3. Potenciómetro analógico.
4. Puerto serie 1.
5. Cubiertas de los cartuchos.
6. Terminales de fuente de alimentación de 24 V CC.
7. Conector de entrada de tensión analógica.
8. LED.
9. Terminales de E/S.
10. Conector de comunicaciones.

5 . 4

5 . 5

5 . 5 . 1

MICRO38

<

Modelos compactos

Referencias “a”

TWDLCAA 10DRF 80
TWDLCAA 16DRF 80
TWDLCAA 24DRF 95
Nota: dimensiones en milímetros

Referencias de productos

Descripción de las referencias y sus características a partir del código.

TWDL A
Tipo
CA: modelo compacto, alimentación en 100/240 Vca.
MD: modelo modular, alimentación en 24 Vcc.

Cantidad de Entradas / Salidas
10: 6 entradas + 4 salidas.
16: 9 entradas + 7 salidas.
20: 12 entradas + 8 salidas.
24: 14 entradas + 10 salidas.
40: 24 entradas + 16 salidas.

Características de Entradas / Salidas
Dxx: entradas 24 Vcc NPN/PNP
DFR: salidas a Relé.
DUK: salidas a transistor NPN
DTK: salidas a transistor PNP
DRT: salidas a relé + salidas a transistor PNP

Dimensiones

39HARDWARE TWIDO 5

< <

5 . 5 . 2

5 . 6

5 . 6 . 1

5 . 6 . 1 . 1

Modelos Modulares

Referencias “a – b”

TWDLMDA 20DTK/DUK 35,4 0 *
TWDLMDA 20DRT 47,5 14,6
TWDLMDA 40DTK/DUK 47,5 0 *
Nota: dimensiones en milímetros
* Sin el conector

Conexionado

En esta sección se muestra un resumen del conexionado de las entradas y salidas
digitales del autómata Twido, para mayor información sobre conexionado de los dis-
tintos módulos (E/S digitales o analógicas, módulos de comunicación, etc.) recurra a
la guía de referencia de Hardware TWD USE 10AS.

Conexionado de las entradas digitales

A continuación se describe la forma de conexión de las entradas del TWIDO.

Entradas con lógica positiva

Conexión de detectores PNP

5 . 6 . 1 . 2

5 . 6 . 2

5 . 6 . 2 . 1

5 . 6 . 2 . 2

MICRO40

<

Conexión de detectores NPN

Conexionado de las salidas digitales

A continuación se describe la forma de conexión de las salidas del TWIDO.

Salidas con relé

Entradas con lógica negativa

Salidas a transistor

Con lógica negativa Con lógica Positiva

41HARDWARE TWIDO 5

< <

5 . 7

5 . 7. 1

5 . 7. 1 . 1

DATOS Datos de sistema y datos de aplicación dinámicos.

PROGRAMA Descriptores y código ejecutable para tareas.

CONSTANTES Palabras constantes, valores iniciales y configuración de entrada / salida.

Estructura de la memoria de usuario de un PLC TWIDO

La memoria del controlador accesible a través de una aplicación de usuario está divi-
dida en dos partes diferentes:

• Memoria de bits
La memoria de bits se almacena en la memoria RAM interna que está integrada
en el controlador. Contiene el mapa de 1280 objetos de bit.

• Función de la memoria de palabras
La memoria de palabras (16 bits) admite:

Tipos de memoria

A continuación se señalan los diferentes tipos de memoria para los controladores Twido:

• RAM interna (integrada)
Esta es la memoria RAM integrada del controlador. Los 10 primeros KB de la
memoria RAM interna constituyen la RAM rápida. Los 32 KB siguientes constitu-
yen la RAM estándar. La RAM interna contiene el programa, constantes y datos.

• EEPROM interna
EEPROM integrada de 32 KB, proporciona una copia de seguridad interna en el
controlador de una aplicación. Protege la aplicación contra los daños provocados
por fallos de batería o cortes de corriente superiores a 30 días. Contiene el pro-
grama y constantes.

• Cartucho de copia de seguridad de memoria externa, cartucho de EEPROM exter-
na opcional para realizar copias de seguridad de una aplicación o para dar cabida
a una aplicación más grande. Se puede utilizar para actualizar la aplicación en la
RAM del controlador. Contiene el programa y constantes, pero ningún dato.

Estructura sin cartucho de memoria externa

En el diagrama que aparece a continua-
ción se describe la estructura de memoria
sin cartucho de memoria externa.

La EEPROM interna está integrada en el
controlador y proporciona 32 KB de
memoria para lo siguiente:

• El programa de aplicación (32 KB)
∑ 512 palabras internas (%MWi)

5 . 7. 1 . 2

5 . 7. 2

MICRO42

<

La EEPROM interna de 32 KB puede almacenar 512 palabras internas (%MWi)

Almacenamiento de la memoria

La memoria RAM interna del controlador se puede almacenar mediante:

• Batería interna (hasta 30 días)
• EEPROM interna (32 KB como máximo)
• Cartucho de memoria externa opcional (64 KB como máximo)

La transferencia de la aplicación desde la memoria EEPROM interna hasta la memo-
ria RAM se realiza automáticamente cuando la aplicación se pierde en la RAM (si no
se ha guardado o si no hay batería)
También se puede realizar una transferencia manual mediante TwidoSoft.

Estructura con cartucho de memoria externa

El cartucho de memoria externa opcional proporciona una copia de seguridad de los
programas y constantes, al mismo tiempo que ofrece memoria ampliada para aplica-
ciones de mayor tamaño.
En el siguiente diagrama se describe la estructura de memoria con cartucho de
memoria externa:

43

Lenguajes de Programación

Introducción

Cuando se habla de los lenguajes de programación se hace referencia a diferentes
formas de poder escribir el programa usuario.
Los softwares actuales permiten traducir el programa usuario de un lenguaje a otro,
pudiendo así escribir el programa en el lenguaje que más convenga.
La creciente complejidad en la programación de los autómatas programables requie-
re más que nunca de la estandarización de la misma. Bajo la dirección del IEC el
estándar IEC 1131-3 (IEC 65) para la programación de PLC ha sido definida.
Alcanzó el estado de estándar internacional en agosto de 1992. Con la idea de hacer
el modelo adecuado para un gran abanico de aplicaciones, cinco lenguajes han sido
definidos en total:

• Gráfico secuencial de funciones (Grafcet)
• Lista de instrucciones.
• Texto estructurado.
• Diagrama de flujo.
• Diagrama de contactos o Lógica de Escalera o Ladder Logic.

No obstante, los lenguajes de programación más empleados en la actualidad son: el
listado de instrucciones y el esquema de contactos o Ladder Logic.

Diagrama de Contactos o Lógica de Escalera

Tradicionalmente los diagramas de lógica de escalera están compuestos por dos líne-
as verticales que representan las líneas de alimentación, mientras que los renglones
contienen los cableados, los arreglos de contactos y las bobinas de relés.
En los PLC, los diagramas de Lógica de Escalera o Ladder Logic son una manera
fácil de dibujar los programas.
Una ventaja importante es que los símbolos básicos están normalizados según NEMA
y son empleados por todos los fabricantes.
En la tabla que sigue se puede ver una comparación entre lo que significa los dibu-
jos para la antigua lógica de escalera y para la moderna programación de un PLC.

6

6 . 1

Comparación de los diagramas Ladder

Simbología Conexión Física de Relé Programación por PC

Líneas Verticales Bus Principal Comienzo y Fin del renglón

Renglones o Peldaños Ramas del Circuito Conjunto de Instrucciones

Contactos
Dirección de dispositivos
de entradas y salida

Bobinas de Relés Dirección en registros de salida

Implementación
Conexión de cables
siguiendo el esquema.

Entrada de símbolos con el
dispositivo de programación

44

Algunos símbolos usados

Como se sabe, existen dos símbolos para la programación de PLC: uno para repre-
sentar contactos normalmente abiertos y otro para representar contactos normalmen-
te cerrados.
Estos contactos pueden representar entradas, salidas o variables internas, es decir,
un bit del registro de entradas, o bits del registro de salida, o de los bits internos o
auxiliares, también llamados relés internos o auxiliares.
Una forma conveniente de ver estos contactos en un programa es pensarlos como una
instrucción que examina si esa entrada está encendida o si está apagada, o dicho de
otra forma examina si el bit que representa esa entrada está encendido o apagado.
Un contacto normalmente abierto representa una interrogación por si un bit está
encendido y un contacto normalmente cerrado representa una interrogación por si
un bit está apagado. Una condición de verdadero o falso es otorgada al contacto si el
PLC encuentra la requerida condición de bit.
Si el PLC encuentra una condición de verdadero para todos los contactos del renglón,
el bit de salida es encendido o apagado según lo indique el símbolo de esa salida.

En la tabla de abajo se muestra un resumen de lo dicho anteriormente.

Un contacto de entrada (salida, variable interna) NA (normalmente abierto) hace que
el PLC revise en el registro de las entradas (salidas o variables internas) si esa entra-
da en particular se encuentra activa o encendida. Si el PLC encuentra la entrada acti-
va permitirá la continuidad a través de ese contacto, en particular en el programa lógi-
co realizado por el usuario.
De forma similar un contacto de entrada (salida o variable interna) NC hace que el
PLC revise en el registro de las entradas (salidas o variables internas) si esa en par-
ticular se encuentra inactiva o desactivada. Esto es, que el PLC revisa a esa localiza-
ción en el registro de las entradas para ver si está desactivada. De ser cierto, el PLC
permite la continuidad a través de ese contacto en el programa del usuario.

Cada contacto y cada bobina de relé representan una localización en el registro de
entradas o salidas. Debe quedar claro que los dibujos sólo “representan” relés que no
existen físicamente. El símbolo de una bobina de relé representa un bit del registro
de las salidas, que podrá estar encendido (puesto en “1”) o apagado (puesto en “0”)
durante la ejecución del programa.
Cada renglón o peldaño del diagrama de lógica de escalera del PLC corresponde a
un conjunto de instrucciones para el PLC, ese conjunto de instrucciones le dirá al
PLC que hacer en respuesta al estado de las entradas (contactos)

La figura que se muestra a continuación grafica esta situación.

Tipo de contacto Símbolo Instrucción dada al PLC
El PLC establece continuidad
si el bit es buscado.

NO / NA Examina si está encendido 1 (ON)

NO / NA Examina si está apagado 0 (OFF)

MICRO

<

45LENGUAJES DE PROGRAMACIÓN CAPITULO 6

< <

6 . 2

6 . 3

Cuando el símbolo del contacto NA representa una localización en el registro de las
salidas, nos provee un reporte del estado del dispositivo de salida. Un contacto de
salida NA hace que el PLC revise esa dirección de salida en particular. El contacto de
salida tendrá continuidad si la salida está encendida, pero mostrará discontinuidad si
la salida está apagada.

Un contacto de salida NC hace que el PLC revise esa dirección de salida en particu-
lar. El contacto de salida tendrá continuidad si la salida está apagada, pero mostrará
discontinuidad si la salida está encendida.
El símbolo más usado para representar las salidas es el de la bobina de un relé. Estos
símbolos no son bobinas reales, sino que son dibujos utilizados para graficar la loca-
lización de una salida en el registro de las salidas.
Para las líneas de funciones más complejas como temporizadores, registros de des-
plazamiento, etc., se emplea el formato de bloques. Éstos no están estandarizados,
aunque guardan una gran similitud entre sí para distintos fabricantes y resultan
mucho más expresivos que si se utiliza para el mismo fin el lenguaje en lista de ins-
trucciones o mnemónico.

Listado de instrucciones (mnemónico)

Utiliza instrucciones derivadas de las operaciones del álgebra de Boole, combinadas
con otras que permiten representar funciones como temporizadores, contadores,
movimientos de datos en la memoria y cálculos (suma, resta, multiplicación, división,
raíz cuadrada, cálculo de porcentaje, cambios en el sistema de numeración, etc.)
Cada instrucción está formada por un mnemónico o código, (abreviatura que repre-
senta una función), y uno o varios argumentos (variables que indican la dirección de
memoria sobre la que se va a trabajar)
Como puede imaginarse existe una equivalencia o correspondencia entre la lógica de
escalera y el listado de instrucciones. En muchos PLC esta equivalencia se puede ver
en forma inmediata sólo con activar un icono de la pantalla de programación.

Diagramas de funciones

El diagrama de funciones (function block diagram o FBD) es un lenguaje gráfico que
permite programar elementos que aparecen como bloques para ser cableados entre
si de forma análoga al esquema de un circuito. El uso de FBD es adecuado para
muchas aplicaciones que involucren el flujo de información o datos entre componen-
tes de control.

Texto estructurado

El texto estructurado (structured text o ST) es un lenguaje de alto nivel estructurado
por bloques que posee una sintaxis parecida al PASCAL. El ST puede ser empleado
para realizar rápidamente sentencias complejas que manejen variables con un amplio
rango de diferentes tipos de datos, incluyendo valores analógicos y digitales. También
se especifica tipos de datos para el manejo de horas, fechas y temporizaciones, algo
importante en procesos industriales. El lenguaje posee soporte para bucles como
REPEAR UNTIL, ejecuciones condicionales empleando sentencias IF-THEN-ELSE y
funciones como SQRT() y SIN()

Grafcet

El gráfico secuencial de funciones (SFC o Grafcet) es un lenguaje gráfico que pro-
porciona una representación en forma de diagrama de las secuencias del programa.
Soporta selecciones alternativas de secuencia y secuencias paralelas. Los elementos
básicos son pasos y transiciones. Los pasos consisten en piezas de programas que
son inhibidas hasta que una condición especificada por las transiciones es conocida.
Como consecuencia de que las aplicaciones industriales funcionan en forma de
pasos, el SFC es la forma lógica de especificar y programar el más alto nivel de un
programa para PLC.

6 . 4

6 . 5

MICRO46

<

47

Instrucciones Tipo

Introducción

George Boole (1815- 1864) nació el 2 de Noviembre de 1815 en Lincoln,
Lincolnshire (Inglaterra) En el 1854 publicó Las leyes del pensamiento sobre las cua-
les son basadas las teorías matemáticas de Lógica y Probabilidad.
Boole aproximó la lógica en una nueva dirección reduciéndola a un álgebra simple,
incorporando lógica en las matemáticas. Agudizó la analogía entre los símbolos alge-
braicos y aquellos que representan formas lógicas. Su álgebra consiste en un méto-
do para resolver problemas de lógica que recurre solamente a los valores binarios 1
y 0 y a tres operadores: AND (y), OR (o) y NOT (no). Comenzaba el álgebra de la lógi-
ca llamada Álgebra Booleana, la cual ahora encuentra aplicación en la construcción
de computadores, circuitos eléctricos, etc.

Tratamiento Booleano

Definición de los principales objetos de bits

Bits de entradas/salidas: estos bits son las “imágenes lógicas” de los estados eléc-
tricos de las entradas/salidas. Están almacenados en la memoria de datos y se actua-
lizan en cada explotación del programa.

El direccionamiento de estos bits es el siguiente:

7

7. 1

Referencias:
Símbolo: IEC61131
Tipo de objeto: %I: para las Entradas y %Q: para las Salidas.

X. Posición del controlador: 0 Controlador master, 1 a 7 controlador remoto.
Y. Módulo: 0 unidad de E/S local, 1 a 7 módulos de ampliación.
Z. Vía, número de la entrada o salida.

Bits internos: los bits internos (%Mi) memorizan los estados intermedios durante la
ejecución del programa.

Bits de sistema: los bits de sistema (%Si) controlan el buen funcionamiento del
autómata, así como el desarrollo del programa de aplicación.

Existen otros bits que pueden usarse en el tratamiento booleano, como son los bits
de los bloques de función y los bits extraídos de palabras.

7. 2

7. 2 . 1

MICRO48

<
Tipo Dirección Cantidad máxima Escritura

Bits entrada %IX.Y.Z Depende Twido No

Salida %QX.Y.Z Depende Twido Sí

Bits internos %Mi 128 ó 256 según modelo Sí

Bits Sistema %Si 128 Según i

Síntesis de los bits utilizados por el Twido

Introducción a los diagramas Ladder Logic

Los diagramas Ladder Logic son similares a los diagramas de lógica de relé. Las prin-
cipales diferencias entre los dos son las Funciones de la Programación de Ladder
Logic que no aparecen en los diagramas de lógica de relé.

Características:

• Todas las entradas están representadas por símbolos de contactos
• Todas las salidas están representadas por símbolos de bobinas
• Las operaciones numéricas están incluidas en el conjunto de instrucciones de

Ladder Logic gráfico

Equivalentes Ladder Logic a los circuitos de relé

La siguiente ilustración muestra un diagrama simplificado del cableado de un circui-
to de lógica de relé y el diagrama Ladder Logic equivalente.

Si observamos la ilustración anterior, podemos percatarnos de que todas las entradas
asociadas al dispositivo de conmutación, en el diagrama de lógica de relé, aparecen
como contactos en el diagrama Ladder Logic.
La bobina de salida M1 del diagrama de lógica de relé se representa con un símbo-
lo de bobina de salida en el diagrama Ladder Logic.
Los números de dirección que aparecen sobre cada uno de los símbolos de contac-
tos o bobinas en el diagrama Ladder Logic hacen referencia a la posición que ocu-
pan las conexiones de entrada/salida con el controlador.

49INSTRUCCIONES TIPO 7

< <

Escalones Ladder Logic

Un programa escrito en lenguaje Ladder Logic está compuesto por escalones, que
son conjuntos de instrucciones gráficas dibujadas entre dos barras verticales de
potencia. El controlador ejecuta los escalones secuencialmente.
El conjunto de instrucciones gráficas representa las siguientes funciones:

• Entradas/salidas del controlador (sensores, relés, luces de pilotos, etc.)
• Funciones del controlador (temporizadores, contadores etc.)
• Operaciones lógicas y matemáticas (adición, división, AND, y XOR entre otras)
• Operadores de comparación y otras operaciones numéricas (A<B, A=B,

desplazamiento, rotación, etc.)
• Variables internas del controlador (bits, palabras, etc.)

Estas instrucciones gráficas se organizan con conexiones horizontales y verticales
que eventualmente llevan a una o varias salidas o acciones. Una red no puede admi-
tir más de un grupo de instrucciones vinculadas.

Bloque de diagramas Ladder Logic

Los diagramas Ladder Logic están compuestos por bloques que representan el flujo
de programas y las funciones, por ejemplo:

• Contactos
• Bobinas
• Instrucciones de flujo de programas
• Bloques de función
• Bloques de comparación
• Bloques de operación

Las instrucciones de los diagramas Ladder Logic se componen de elementos gráficos.
Esta sección enumera y describe los elementos gráficos utilizados en las instruccio-
nes Ladder de Twido.

Contactos
Los elementos gráficos de los contactos se programan en el área de prueba y ocu-
pan una celda (el alto de una fila por el ancho de una columna)

7. 2 . 2

7. 2 . 3

MICRO50

<

Elementos de conexión
Los elementos gráficos de conexión se utilizan para conectar los elementos gráficos
de acción y de prueba.

Bobinas
Los elementos gráficos de bobina se programan en el área de acción y ocupan una
celda (el alto de una fila por el ancho de una columna)

Bloques de función
Los elementos gráficos de los bloques de función se programan en la misma área de
prueba y requieren cuatro filas y dos columnas de celdas (excepto para contadores
muy rápidos que requieren cinco filas y dos columnas)

51INSTRUCCIONES TIPO 7

< <

Número de línea: los números de líneas se generan automáticamente al introducir una
instrucción. Las líneas vacías y las líneas de comentario no tienen números de línea.

Código de instrucción: el código de instrucción es un símbolo para un operador, que
identifica la operación que se va a realizar utilizando los operantes. Los operadores
típicos especifican operaciones numéricas y boolearias.

Ejemplo
En el programa de ejemplo anterior, LD es la abreviatura del código de instrucción
para una instrucción LOAD. La instrucción LOAD coloca (carga) el valor del ope-
rando %I0.1 en un registro interno llamado el acumulador.
Hay dos tipos de instrucciones básicas:

• Instrucciones de prueba. Estas instrucciones configuran o comprueban
las condiciones necesarias para realizar una acción. Por ejemplo, LOAD
(LD) y AND.

• Instrucciones de acción. Estas instrucciones realizan acciones como resultado
de las condiciones configuradas. Por ejemplo, instrucciones de asignación
como STORE (ST) y RESET (R)

7. 3

Bloques de operación y comparación
Los bloques de comparación se programan en el área de prueba, mientras que los de
operación lo hacen en el área de acción.

Programas de Listado de Instrucciones

Un programa escrito en lenguaje de lista está formado por una serie de instrucciones
que el controlador ejecuta de forma secuencial. Cada instrucción de lista está repre-
sentada por una línea de programa y tiene tres componentes:

• Número de línea
• Código de instrucción
• Operando(s)

A continuación se muestra un ejemplo de un programa de lista.

7. 3 . 1

MICRO52

<

Operando: un operando es un número, dirección o símbolo que representa un valor
que puede manipular un programa en una instrucción.

Ejemplo
En el programa del ejemplo expuesto anteriormente, el operando %I0.1 es una direc-
ción que tiene asignado el valor de una entrada del controlador. Una instrucción puede
tener de cero a tres operandos dependiendo del tipo de código de instrucción.
Los operandos pueden representar los siguientes elementos:

• Entradas y salidas del controlador, como sensores, botones y relés.
• Funciones de sistema predefinidas, como temporizadores y contadores.
• Operaciones aritméticas, numéricas y de comparación.
• Variables internas del controlador, como bits y palabras.

Instrucciones del lenguaje de lista

Un lenguaje de lista se compone de los siguientes tipos de instrucciones:

1. Instrucciones de prueba
2. Instrucciones de acción
3. Instrucciones sobre bloques de función

Esta sección identifica y describe las instrucciones Twido para la programación de listas.

1. Instrucciones de prueba

53INSTRUCCIONES TIPO 7

< <

La siguiente tabla describe las instrucciones de prueba en lenguaje de listas.

2. Instrucciones de acción

La siguiente tabla describe las instrucciones de acción en lenguaje de listas.

3. Instrucciones sobre bloques de función

La siguiente tabla describe los bloques de función en lenguaje de listas.

Instrucciones de carga (LD, LDN, LDR, LDF)

Las instrucciones de carga LD, LDN, LDR y LDF corresponden respectivamente a los
contactos abierto, cerrado, flanco ascendente y flanco descendente (LDR y LDF sólo
se utilizan con entradas del controlador)

• Contactos normales abiertos

• Contactos normales cerrados

MICRO54

<

• Contacto flanco ascendente

El tiempo que permanece activa la salida equivale a un ciclo del autómata.

• Contacto flanco descendente

El tiempo que permanece activa la salida equivale a un ciclo del autómata.

55INSTRUCCIONES TIPO 7

< <

Ejemplos
Los siguientes diagramas son ejemplos de instrucciones de carga.
Operandos permitidos.

La siguiente tabla enumera los tipos de instrucciones de carga con operandos
equivalentes y permitidos de Ladder Logic.

Instrucciones de almacenamiento (ST, STN, R, S)

Las instrucciones de almacenamiento ST, STN, S y R corresponden respectivamente
a las bobinas directas e inversas, establecida y restablecida.

Los siguientes diagramas son ejemplos de instrucciones de almacenamiento:

Bobina Directa

Bobina Inversa

Bobina de Set y Reset

Operandos permitidos
La siguiente tabla enumera los tipos de instrucciones de almacenamiento con ope-
randos equivalentes y permitidos de Ladder Logic.

Instrucciones AND lógicas (AND, ANDN, ANDR, ANDF)

Las instrucciones AND realizan una operación lógica AND entre el operando (o su
inverso, o su flanco ascendente, o descendente) y el resultado booleario de la instruc-
ción precedente.

• Producto Lógico

• Producto Lógico Negado

• Producto Lógico Flanco Ascendente

El tiempo que permanece activa la salida equivale a un ciclo de programa.

• Producto Lógico Flanco Descendente

El tiempo que permanece activa la salida equivale a un ciclo de programa.

MICRO56

<

57INSTRUCCIONES TIPO 7

< <

Instrucciones OR lógicas (OR, ORN, ORR, ORF)

Las instrucciones OR realizan una operación lógica OR entre el operando (o su inver-
so; o su flanco ascendente o descendente) y el resultado booleario de la instrucción
precedente.

• Suma Lógica

• Suma Lógica Negada

El tiempo que permanece activa la salida equivale a un ciclo del autómata.

• Suma lógica con Flanco Descendente

El tiempo que permanece activa la salida equivale a un ciclo del autómata.

• Operandos permitidos

La siguiente tabla enumera los tipos de instrucciones OR con operandos equivalen-
tes y permitidos de Ladder Logic.

La siguiente tabla enumera los tipos de instrucciones AND con operandos equivalen-
tes y permitidos de Ladder Logic.

• Suma Lógica con Flanco Ascendente

MICRO58

<

Instrucciones de OR exclusivo (XOR, XORN, XORR, XORF)
Estas instrucciones realizan un O exclusivo entre el operando (o su inverso, o flanco
ascendente o descendente) y el resultado booleano de la instrucción anterior. Esta
operación es conocida también como comparador de desigualdad, puesto que el
resultado es 1 (ON), cuando los operandos involucrados son distintos.

• Suma Lógica Exclusiva

• Suma Lógica Exclusiva Negada

• Suma lógica Exclusiva Flanco Ascendente

• Suma lógica Exclusiva Flanco Descendente

Las instrucciones O exclusiva pueden realizarse también con contactos e instruccio-
nes comunes. A continuación detallamos la forma de realizarlo para ilustrar la lógica
de la instrucción.

59INSTRUCCIONES TIPO 7

< <

Operandos permitidos
La siguiente tabla enumera los tipos de instrucciones XOR y operandos permitidos.

Casos especiales
Precauciones especiales para utilizar instrucciones XOR en programas de Ladder Logic:

• No inserte contactos XOR en la primera posición de un escalón.
• No inserte contactos XOR de forma paralela con otros elementos de Ladder

Logic (consulte el siguiente ejemplo)

Como se muestra en el siguiente ejemplo, la inserción de un elemento de forma para-
lela con el contacto XOR generará un error de validación.

Instrucción NOT (N)
La instrucción NOT (N) niega el resultado booleario de la instrucción anterior.

Ejemplo
A continuación se muestra un ejemplo de uso de la instrucción NOT.

Operandos permitidos
No aplicable.
Cronograma.
El siguiente diagrama muestra la temporización de la instrucción NOT.

Bloque de función del temporizador (%TMi)
Cada uno de los temporizadores puede configurarse de una de las tres formas pro-
puestas por la normativa IEC61131.

Los 3 tipos propuestos son:

1. TON (temporizador de retardo a la conexión): utilice este tipo de temporizador
para controlar las acciones de retardo a la conexión.

2. TOF (temporizador de retardo a la desconexión): utilice este tipo de temporizador
para controlar las acciones de retardo a la desconexión.

3. TP (pulso de temporizador): utilice este tipo de temporizador para generar pulsos
de duración determinada.

Los retardos o períodos de pulsos se pueden programar y modificar utilizando TwidoSoft.
A continuación se muestra una ilustración del bloque de función del temporizador:

Parámetros
El bloque de función del temporizador presenta los siguientes parámetros:

MICRO60

<

Parámetro Etiqueta Valor

Número de
Temporizador %TMi Controlador compacto 0 a 63.

Controladores modulares 0 a 127.

Tipo TON Retardo a la conexión (predeterminado)

TOF Retardo a la desconexión.

TP Pulso (monoestable)

Base de tiempo TB 1 min (predeterminado), 1 s, 100 ms, 10 ms, 1 ms. (para TM0
y TM1)

Valor actual %TMi.V Palabra que aumenta de 0 a %TMi.P cuando el temporizador
está en funcionamiento. Se puede leer y comprobar, pero no
se puede escribir desde el programa.
%TMi.V se puede modificar utilizando el editor de datos.

Valor %TMi.P 0 - 9999. Palabra que se puede leer, comprobar
preestablecido escribir desde el programa. El valor predeterminado es 9999.

El período o retardo generado es igual a %TMi.P x TB

Editor de datos Y/N Y: Sí, el valor preestablecido %TMi.P puede modificarse utili-
zando el editor de datos.
N: No, el valor preestablecido %TMi.P no se puede modificar.

Establecimiento IN Inicia el temporizador en flanco ascendente (tipos
de entrada TON o TP) o en flanco descendente (tipo TOF)
(o instrucción)

Salida del Q El bit asociado %TMi.Q se establece en 1
temporizador dependiendo de la función realizada: TON, TOF o TP.1.

El tiempo t de temporización se calcula de la siguiente forma:

61INSTRUCCIONES TIPO CAPITULO 7

< <

RECUERDE que...
Cuanto mayor sea el valor preestablecido, mayor será la precisión del temporizador.

Tipo de temporizador TOF
El tipo de temporizador TOF (temporizador de retardo a la desconexión) se utiliza para
controlar las acciones de retardo a la desconexión. Este retardo se puede programar
con TwidoSoft.

Cronograma
El siguiente cronograma ilustra el funcionamiento del temporizador de tipo TOF.

Operación
En la siguiente tabla se describe el funcionamiento del temporizador de tipo TOF.

Tipo de temporizador TON
El tipo de temporizador TON (temporizador de retardo a la conexión) se utiliza para
controlar las acciones de retardo a la conexión. Este retardo se puede programar con
TwidoSoft.

Cronograma
El siguiente cronograma ilustra el funcionamiento del temporizador de tipo TON.

Fase Descripción

1 El valor actual %TMi.V se establece en 0 en un flanco ascendente en la entrada IN,
aun cuando el temporizador se encuentre en ejecución.

2 El bit de salida %TMi.Q se establece en 1 cuando se detecte un flanco ascendente
en la entrada N.

3 El temporizador inicia en el flanco descendente de la entrada IN.

4 El valor actual %TMi.V aumenta a %TMi.P en incrementos de una unidad por pulso
de la base de tiempo TB.

5 El bit de salida %TMi.Q se restablece a 0 cuando el valor actual llega a %TMi.P.

Operación
En la siguiente tabla se describe el funcionamiento del temporizador de tipo TON.

Tipo de temporizador TP
El tipo de temporizador TP (pulso de temporizador) se utiliza para generar pulsos de
duración determinada. Este retardo se puede programar con TwidoSoft.

Cronograma
El siguiente cronograma ilustra el funcionamiento del temporizador de tipo TP:

MICRO62

<
Fase Descripción

1 El temporizador inicia en el flanco ascendente de la entrada IN.

2 El valor actual %TMi.V aumenta de 0 a %TMi.P en incrementos de una unidad
por pulso de la base de tiempo TB.

3 El bit de salida %TMi.Q se establece en 1 cuando el valor actual llega a %TMi.P.

4 El bit de salida %TMi.Q permanece en 1 mientras la entrada IN esté en 1.

5 Si se detecta un flanco descendente en la entrada IN, el temporizador se detiene, aun
cuando el temporizador no haya alcanzado el valor %TMi.P, y %TMi.V se establece en 0.

Fase Descripción

1 El temporizador se inicia en el flanco ascendente de la entrada IN. El valor actual %TMi.V
se establece en 0 si el temporizador todavía no se ha iniciado.

2 El bit de salida %TMi.Q se establece en 1 cuando se inicia el temporizador.

3 El valor actual %TMi.V del temporizador aumenta de 0 a %TMi.P en incrementos de una
unidad por pulso de la base de tiempo TB

4 El bit de salida %TMi.Q se establece en 0 cuando el valor actual llega a %TMi.P

5 El valor actual %TMi.V se establece en 0 cuando %TMi.V es igual a %TMi.P
y la entrada IN vuelve a 0

6 Este temporizador no se puede restablecer. Una vez %TMi.V es igual a %TMi.P y la
entrada IN es 0, %TMi.V se establecerá en 0

Operación
En la siguiente tabla se describe el funcionamiento del temporizador de tipo TP.

63INSTRUCCIONES TIPO 7

< <

Programación y configuración de temporizadores
Los bloques de función del temporizador (%TMi) se programan de la misma manera,
independientemente del modo en que vayan a utilizarse. La función del temporizador
(TON, TOF o TP) se selecciona durante la configuración.

Ejemplo
La siguiente ilustración es un bloque de función del temporizador con ejemplos de
programación.

Bloque de función del temporizador

Configuración
Durante la configuración deben introducirse los siguientes parámetros:

• Tipo de temporizador: TON, TOF o TP.
• Tiempo base (TB): 1 min., 1s, 100 ms., 10 m.s o 1 ms.
• Valor preestablecido (%TMi.P): 0 a 9999.
• Ajuste: Sí o No (S o N)

Casos especiales
La siguiente tabla contiene una lista de casos especiales de programación y configu-
ración de temporizadores.

7. 4

Caso especial Descripción

Efecto de un Fuerza el valor actual a 0. Establece la salida %TMi.Q en 0. El valor
reinicio en frío preestablecido se restablece al valor definido durante la configuración.
(%S0=1)

Efecto de un No tiene ningún efecto en los valores actuales y presentes del temporizador.
reinicio en caliente El valor actual no varía durante un corte de alimentación.
(%S1=1)

Efecto de una No inmovilizará el valor actual.
detención
del controlador

Efecto de un salto Un salto sobre el bloque del temporizador no mantendrá el temporizador. El
del programa temporizador continúa aumentando hasta que alcanza el valor preestablecido

(%TMi.P). En este punto, el bit de finalización (%TMi.Q) asignado a la salida Q
del bloque del temporizador cambia de estado; sin embargo, la salida asociada
cableada directamente a la salida del bloque no se activa y el controlador no
la explora.

Comprobación Es recomendable realizar una prueba del bit.
por bit %TMi.Q %TMi.Q una única vez en el programa.
(bit de finalización)

Efecto de modificar Modificar el valor presente mediante una instrucción o ajustando el valor sólo
el valor preestablecido tiene efecto cuando se vuelve a activar el temporizador.
%TMi.P

Parámetros
El bloque de función del contador tiene los siguientes parámetros:

Temporizadores con un tiempo base de 1 ms
El tiempo base de 1 ms sólo está disponible en temporizadores %TM0 y %TM1. Las
cuatro palabras del sistema %SW76, %SW77, %SW78 y SW79 se pueden utilizar como
"relojes de arena". El sistema hace que estas cuatro palabras disminuyan individualmen-
te cada milisegundo si tienen un valor positivo. Se pueden conseguir varias temporiza-
ciones, cargando de manera sucesiva una de estas palabras o realizando comprobacio-
nes de los valores inmediatos. Si el valor de uno de estas cuatro palabras es menor que
0, no se modificará. Es posible inmovilizar un temporizador estableciendo el bit 15
correspondiente en 1 y cancelar la inmovilización restableciéndolo en 0.

Ejemplo
A continuación se muestra un ejemplo de programación de un bloque de función
del temporizador.

Bloque de función del contador progresivo/regresivo (%Ci)
El bloque de función del contador (%Ci) proporciona un recuento de eventos progre-
sivo o regresivo. Estas dos operaciones pueden realizarse de forma simultánea.
A continuación se muestra una ilustración del bloque de función del contador progre-
sivo/regresivo.

7. 5

MICRO64

<

Parámetro Etiqueta Valor

Número de %Ci 0 a 31
contador

Valor actual %Ci.V La palabra aumenta o disminuye con arreglo a las entradas (o
instrucciones) CU y CD. El programa puede leerla y compro-
barla, pero no escribirla. Utilice el editor de datos para modifi-
car %Ci.V.

Valor %Ci.P 0-%Ci.P-9999. La palabra puede leerse comprobarse y
preestablecido escribirse (valor preestablecido: 9999)

65INSTRUCCIONES TIPO 7

< <

Operación
La siguiente tabla describe las fases principales de la operación del contador progre-
sivo/regresivo.

Parámetro Etiqueta Valor

Editar utilizando S/N • S: Sí, el valor preestablecido puede modificarse utilizando el
el editor de datos editor de datos.

• N: No, el valor preestablecido no puede modificarse utilizando
el editor de datos.

Restablecer entrada R En estado 1: %Ci.V = 0.
(o instrucción)

Establecer entrada S En estado 1: %Ci.V = %Ci.P.
(o instrucción)

Entrada de conteo CU Incrementos %Ci.V en un flanco ascendente.
progresivo
(o instrucción)

Entrada de conteo CD Disminuciones %Ci.V en un flanco ascendente.
regresivo
(o instrucción)

Salida de E (Vacío) El bit asociado %Ci.E=1, cuando el contador regresivo
trasgresión por %Ci.V cambia de 0 a 9999 (establecido a 1 cuando
debajo de rango %Ci.V alcanza 9999 y se restablece a 0 si el contador conti-

núa con el conteo regresivo).

Salida D (Hecho) El bit asociado %Ci.D=1, cuando %Ci.V=%Ci.P.
predeterminada
alcanzada

Salida de F (Llena) El bit asociado %Ci.F=1, cuando %Ci.V cambia de 9999 a 0
desborde (establecido a 1 cuando %Ci.V alcanza 0 y se restablece a 0 si

el contador continúa con el conteo progresivo).

Operación Acción Resultado

Conteo progresivo Aparece un flanco ascendente en la El valor actual de %Ci.V aumenta en una
CU de entrada de conteo progresivo unidad.
(o se activa la CU de instrucción).

El valor actual de %Ci.V es igual al El bit %Ci.D de salida "preestablecida
valor %Ci.P preestablecido. alcanzada" asignado a la salida D cambia

a estado 1.

El valor actual %Ci.V cambia El bit de salida %Ci.F (desborde de conteo
de 9999 a 0. progresivo) cambia a estado 1.

Si el contador continúa con El bit de salida %Ci.F (desborde de conteo
el conteo progresivo. progresivo) se restablece a 0.

Conteo regresivo Aparece un flanco ascendente en el El valor actual de %Ci.V disminuye en una
CD de entrada de conteo regresivo unidad.
(o se activa el CD de instrucción).

El valor actual %Ci.V cambia El bit de salida %Ci.E (trasgresión por
de 0 a 9999. debajo de rango) cambia a estado1.

Si el contador continúa con El bit de salida %Ci.E (trasgresión por
el conteo regresivo. debajo de rango) se restablece como 0.

7. 6

MICRO66

<

Operación Acción Resultado

Conteo progresivo/ Para utilizar simultáneamente las funciones de conteo progresivo y regresivo
regresivo (o para activar las instrucciones CD y CU), deben controlarse las dos entradas

correspondientes CU y CD. Estas dos entradas se examinan sucesivamente. Si
ambas están en 1, el valor actual permanece intacto.

Restablecer La entrada R se establece a estado 1 El valor actual %Ci.V se fuerza a 0. Las
(o la instrucción R se activa) salidas %Ci.E, %Ci.D y %Ci.F están a 0.

La entrada restablecida tiene prioridad.

Establecer Si la entrada S está en estado 1 El valor actual %Ci.V toma el valor %Ci.P
(o se activa la instrucción S) y la y la salida %Ci.D se establece a 1.
entrada restablecida está a 0
(o la instrucción R está inactiva).

Caso especial Descripción

Efecto de un reinicio en frío (%S0=1)

• El valor actual %Ci se establece a 0.
• Los bits de salida %Ci.E, %Ci.D y %Ci.F

se establecen a 0.
• El valor preestablecido se inicializa con

el valor definido durante la configuración.

Efecto de un reinicio en caliente (%S1=1)
de una detención del controlador

No tiene ningún efecto sobre el valor actual
del contador (%Ci.V)

Efecto de modificar el valor preestablecido %Ci.P

La modificación del valor preestablecido
mediante una instrucción o ajustándolo
entra en vigor cuando la aplicación procesa
el bloque (activación de una de las entradas)

Casos especiales
La siguiente tabla contiene una lista de casos especiales de programación y configu-
ración de contadores.

Programación y configuración de contadores
El siguiente ejemplo es un contador que proporciona un conteo de elementos hasta
5000. Cada pulso de entrada %I1.2 (cuando el bit interno %M0 está en 1) incremen-
ta el contador %C8 hasta su valor preestablecido final (bit %C8.D=1)
El contador se restablece mediante la entrada %I1.1.

Ejemplo
Modelo de programación:
La siguiente ilustración es un bloque de función del contador con ejemplos de pro-
gramaciones reversibles y no reversibles.

67INSTRUCCIONES TIPO 7

< <

Fase Descripción

> Prueba si el operando 1 es mayor que el operando 2

>= Prueba si el operando 1 es mayor o igual que el operando 2

< Prueba si el operando 1 es menor que el operando 2

<= Prueba si el operando 1 es menor o igual que el operando 2

= Prueba si el operando 1 es igual que el operando 2

<> Prueba si el operando 1 es diferente del operando 2

Estructura
La comparación se ejecuta entre corchetes siguiendo las instrucciones LD, AND y
OR. El resultado es 1 cuando la comparación solicitada es verdadera. Ejemplos de
instrucciones de comparación:

Configuración:
Deben introducirse los siguientes parámetros durante la configuración:

• Valor preestablecido (%Ci.P): establecido a 5000 en este ejemplo
• Ajuste: Sí

Instrucciones de comparación
Las instrucciones de comparación se utilizan para comparar dos operandos. La siguien-
te tabla enumera los tipos de instrucciones de comparación.

Bloque de función del controlador

8

8 . 1

Grafcet

Introducción

Los primeros métodos para el desarrollo de automatismos eran puramente intuitivos,
llevados a términos por expertos y desarrollados basándose en la experiencia.
Todo automatismo secuencial o concurrente se puede estructurar en una serie de
etapas que representan estados o subestados del sistema, en los cuales se realiza
una o más acciones, así como transiciones, que son las condiciones que deben darse
para pasar de una etapa a otra.
El Grafcet es un diagrama funcional que describe la evolución del proceso que se
pretende automatizar, indicando las acciones que hay que realizar sobre el proceso y
qué informaciones provocan estas acciones.
Partiendo de él se pueden obtener las secuencias que ha de realizar el PLC. Su
empleo para resolver tareas de automatización facilita el diálogo entre personas con
niveles de formación técnica diferente, tanto en el momento del análisis del proceso
a automatizar, como posteriormente en el mantenimiento y reparación de averías.
El GRAFCET surge en Francia a mediados de los años 70, debido a la colaboración
de algunos fabricantes de autómatas, como Telemecanique y Aper con dos organis-
mos oficiales, AFCET (Asociación francesa para la cibernética, economía y técnica) y
ADEPA (Agencia nacional para el desarrollo de la producción automatizada)
Homologado en Francia, Alemania, y posteriormente por la comisión Electrónica
Internacional (IEC 848, año 1988)

Elementos Gráficos

Descripción de los pasos
Antes de describir los pasos recordemos los diagramas de Espacio-Fase.
En este tipo de diagramas se representa la secuencia de acción que se quiere auto-
matizar. Para describirlo en forma precisa se representa la secuencia de acción de los
actuadores (cilindros, motores, luces, sirenas, etc.) y el encadenamiento de las seña-
les de mando (finales de carrera, pulsadores, llaves, o sensores de cualquier tipo)
Se utilizan para ello dos ejes coordenados. En el eje vertical se representa el estado
de los actuadores del sistema, utilizando los valores binarios (0 y 1)
Se adoptará valor “0” para indicar la posición de reposo de los actuadores (motores
detenidos y cilindros con vástagos retraídos, etc.)
Y con valor “1” para indicar el estado del elemento actuado (motor en marcha, cilin-
dro con su vástago extendido, etc.)
En el eje horizontal se indicarán las fases o pasos en que se subdivide el ciclo de tra-
bajo. Estos pasos o fases están caracterizados por la modificación o cambio del esta-
do de un elemento constitutivo del mando.

Ejemplo

68

69GRAFCET8

< <

Los pasos o etapas representan los estados estables del sistema. Se representan
mediante un cuadrado numerado, los pasos o etapas deben estar numerados; aún
que no necesariamente de forma correlativa, no puede haber dos pasos o etapas con
el mismo número, las etapas o pasos pueden estar activos o inactivos. Al representar
el estado del GRAFCET en un momento dado, se puede indicar que una etapa está
activa, con un punto de color o coloreando todo el cuadrado.

Modelo de aplicación del diagrama Espacio-Fase:

En este diagrama de espacio fase se puede ver como las señales del comando
bimanual “Y” b0 “Y” c0 permiten el arranque de la secuencia. Se puede ver tam-
bién que primero se extiende el vástago del cilindro “A”. Una vez que el cilindro “A”
llega a su final de carrera extendido se activa a1, que es quien da señal para que
se extienda el vástago del cilindro “B”. Cuando “B” llegue a su final de carrera
extendido b1, esta señal da la orden para que se retraiga el vástago del cilindro “A”
y se extienda el vástago del cilindro “C”. Una vez que “A” activó su final de carre-
ra retraído a0, “Y” “C” activó su final de carrera extendido c1 se retraen los vásta-
gos de los cilindros “B” y “C”. El ciclo podrá recomenzar sólo cuando los finales
de carrera b0 y c0 se activen y se presione el comando bimanual.

Se puede ver entonces que:

1° fase: se extiende el vástago del cilindro “A”.
2° fase: se extiende el vástago del cilindro “B”.
3° fase: se retrae el vástago del cilindro “A” y simultáneamente se extiende
el vástago del cilindro “C”.
4° fase: se retraen los vástagos de los cilindros “B” y “C” simultáneamente.

Como se dijo antes el Grafcet es un diagrama funcional que al igual que el diagrama
de espacio - fase describe la evolución del proceso. El Grafcet también está formado
por etapas o pasos, y cada una de ellas llevará asociada una o varias acciones a rea-
lizar sobre el proceso.
Las etapas o pasos representan cada uno de los estados del sistema.
Las etapas se representan con cuadrados y con un número o una letra y un subíndi-
ce. En cualquier caso el número indica el orden que ocupa el paso dentro del Grafcet.
Para distinguir el comienzo del Grafcet, la primera etapa se representa con un doble
cuadrado.
Los pasos o etapas iniciales de un sistema se activan al iniciar el GRAFCET. Una vez
que se han iniciado, tienen el mismo tratamiento que las otras etapas. Un sistema
debe tener como mínimo un paso o etapa inicial.

MICRO70

<

En las etapas, puede o no haber acciones asociadas. Estas acciones asociadas con
cada etapa se representan con un rectángulo, donde se indica el tipo de acción a rea-
lizarse, puede ser que una etapa pueda llevar asociada varias acciones.

Más aún la activación de una salida puede estar sujeta a una condición lógica. Está
condición lógica puede por ejemplo ser función de señales de entrada, de variables
internas, o del estado activo o inactivo de otros pasos del GRAFCET.

En la figura anterior, hay dos etapas y una transición entre ellas; para que el proceso
evolucione del paso 5 al paso 6, es necesario que el paso 5 esté activo y que la tran-
sición entre los dos pasos sea válida.

Que la transición sea válida implica que la señal o conjunto de señales que se agru-
pa en esa transición están presentes o activas. Sólo entonces se produce la activa-
ción del paso 6 y la desactivación del 5.

Ese conjunto de señales que forman la transición es información que proviene del
exterior (ordenes del operador, de contadores, de temporizadores, de finales de carre-
ras, etc.) y/o de variables auxiliares y/o del estado activo o inactivo de algunos pasos.
En un Grafcet de una sola rama sólo puede existir un paso activo; por lo tanto se pro-
duce la activación de la etapa 6 y la desactivación de la etapa 5.

Entonces cuando el paso 05 esté activo será necesario que: el switch l1 esté cerra-
do y el pulsador de parada está abierto para activar la electroválvula A11.

Líneas de evolución
Las líneas de evolución unen entre si las etapas que representan actividades conse-
cutivas. Las líneas se entenderán siempre orientadas de arriba abajo, a menos que se
represente una flecha en sentido contrario. Dos líneas de evolución que se crucen
debe de interpretarse, en principio que no están unidas

Transiciones
En Grafcet, el proceso se descompone en una serie de, pasos que son activados uno
tras otro. Por tanto, tendrá que existir una condición que al validarse permita pasar de
un paso a otro. A esta condición se la llama transición.

71GRAFCET8

< <

8 . 2 Reglas de Evolución

• El proceso se descompone en etapas, que serán activadas en forma secuencial.
• Una o varias acciones se asocian a cada etapa. Estas acciones sólo están activas

cuando la etapa está activa.
• Una etapa se hace activa cuando la precedente lo está y la transición entre

ambas ha sido activada.
• La activación de una transición implica la activación de la etapa siguiente y la

desactivación de la precedente.
• El paso o etapa inicial estará en un comienzo incondicionalmente activo y será

marcado con un doble recuadro.

• Una transición puede estar habilitada o no.
• Estará habilitada cuando el paso inmediato anterior esté activo.
• La transición no podrá saltar si no está habilitada o si las señales asociadas en la

condición lógica que la generó no son verdaderas.
• El salto de una transición lleva a la activación de todos los pasos que le siguen

inmediatamente y desactiva todos los pasos inmediatamente anteriores a ella.

8 . 3

MICRO72

<

Descripción de las instrucciones Grafcet para el autómata Twido

Instrucciones Grafcet
La tabla que aparece a continuación enumera todas las instrucciones y objetos nece-
sarios para programar un diagrama Grafcet con un PLC Twido.

1. No apoya Grafcet gráfico.
2. El primer paso =*=i o -*-i escrito indica el inicio del procesamiento secuencial

y, por lo tanto, el final del procesamiento previo.

Ejemplos de Grafcet

Secuencia lineal:

73GRAFCET8

< <

8 . 4

Secuencia alternativa:

RECUERDE que...
Para que un diagrama Grafcet funcione, debe haber al menos un paso activo utilizan-
do la instrucción *=i (paso inicial) o el diagrama debe ubicarse antes durante el pro-
cesamiento previo utilizando el bit de sistema %S23 y la instrucción S %Xi.

Descripción de la estructura del programa Grafcet

Un programa Grafcet de TwidoSoft consta de tres partes:

• Procesamiento previo
• Procesamiento secuencial
• Procesamiento posterior

Procesamiento previo

El procesamiento previo consta de las siguientes partes:
• Recuperación de la alimentación
• Errores
• Cambios de modo de funcionamiento
• Pasos Grafcet de ubicación previa
• Entrada lógica

Secuencias simultáneas:

Ejemplo
En el ejemplo de ubicación previa que aparece a continuación (área anterior al pri-
mer paso Grafcet), el estado 0 de la entrada %I0.6 solicita que el diagrama Grafcet
se restaure estableciendo el bit de sistema %S22 en 1. Esto desactivará los pasos
activos. El flanco ascendente de la entrada %I0.6 coloca el diagrama antes del
paso X1. Finalmente, la utilización del bit de sistema %S21 fuerza la inicialización
de Grafcet.

MICRO74

<

Bit de sistema Nombre Descripción

%S21 Iniciación de Grafcet Todos los pasos activos se desactivan y los pasos
iniciales se activan.

%S22 Restablecer Grafcet Se desactivan todos los pasos.

%S23 Ubicación previa de
Grafcet

Este bit se debe establecer en 1 si %Xi han sido
escritos de manera explícita por la aplicación
durante el procesamiento previo. Si el procesamiento
previo mantiene el bit en 1 sin ningún cambio explícito
de los objetos %Xi, Grafcet se congela (no se tienen
en cuenta las actualizaciones)

Procesamiento secuencial
El procesamiento secuencial se realiza en el diagrama (instrucciones que represen-
tan el diagrama)

• Pasos
• Acciones asociadas a los pasos
• Transiciones
• Condiciones de transición

Ejemplo

El procesamiento previo comienza con la primera línea del programa y finaliza con
la primera aparición de una instrucción "= * =" o "- * -". Existen tres bits de sistema
designados al control de Grafcet: %S21, %S22 y %S23. La aplicación establece
cada uno de estos bits de sistema en 1 (si fuera necesario), normalmente durante
el procesamiento previo. El sistema lleva a cabo la función asociada cuando finali-
za el procesamiento previo y, entonces, el sistema restaura bit de sistema a 0.

75GRAFCET8

< <

El procesamiento secuencial termina con la ejecución de la instrucción "= * =
POST" o con la finalización del programa.

Procesamiento posterior
El procesamiento posterior consta de las siguientes partes:

• Comandos del procesamiento secuencial para controlar las salidas
• Dispositivos de bloqueo de seguridad específicos para las salidas

Ejemplo

Acciones asociadas con los pasos Grafcet

Un programa Grafcet de TwidoSoft ofrece dos modos de programar acciones asocia-
das con los pasos:

• En la sección de procesamiento posterior
• En las instrucciones de lista o escalones de Ladder Logic de los propios pasos
• Asociación de acciones en el procesamiento posterior

En caso de que existan limitaciones en el modo de seguridad o de ejecución, es prefe-
rible programar acciones en la sección de procesamiento posterior de una aplicación
Grafcet. Puede utilizar las instrucciones de lista Establecer y Restablecer o conectar
bobinas en el programa Ladder Logic para activar los pasos de Grafcet (%Xi)

Ejemplo
Puede programar las acciones asociadas a los pasos dentro de las instrucciones
de lista o escalones de Ladder Logic. En este caso, la instrucción de lista o el esca-
lón de Ladder Logic no se examinan a menos que esté activo el paso. Éste es el
modo más eficaz, claro y sostenible de utilizar Grafcet.

8 . 5

8 . 6

MICRO76

<

Grafcet a programar

Conexión de las entradas/salidas:

Entradas: PM %I0.0
FCR %I0.1 (Final de carrera retraído)
FCE %I0.2 (Final de carrera extendido)

Salidas: A11 %Q0.0 (adelante)
A10 %Q0.1 (atrás)

77GRAFCET8

< <

8 . 7 Evaluación

1. ¿En que consiste la programación de un autómata?

2. ¿Qué es el GRAFCET?

3. ¿De que elementos gráficos está compuesto el GRAFCET?

4. ¿Cuándo se hace activa una etapa?

5. ¿Qué diferentes estructuras tiene el GRAFCET?

6. ¿Cuáles son los lenguajes de programación más utilizados?

7. Explicar los conceptos generales del lenguaje de contactos.

78

Ejercicios de Aplicación

Problemas con compuertas

Objetivo Didáctico: conocer las instrucciones de programación LD, STR, AND, OR.

Planteo del Ejercicio

Con preguntas del tipo: ¿qué debería suceder para que la lámpara se encienda?, con-
feccionar el listado de instrucciones para que el PLC ejecute la acción equivalente al
circuito eléctrico.
Confeccionar un diagrama donde se muestre la activación de las llaves y donde se
muestre en que condiciones se activará la salida en función del tiempo.

9

Ejercicio 1

Objetivo: presentar las instrucciones LD y STR dentro de un problema particular.
Mostrar que la instrucción STR sólo activa la salida mientras la entrada este presente.

Planteo

Se pretende instalar una luz indicadora para el control de tránsito interno en una plan-
ta industrial, y se desea que cumpla con los requisitos siguientes:

• Cuando sea accionado un pulsador, la lámpara deberá encenderse.
• Cuando el accionamiento sea liberado, la lámpara deberá apagarse y permanecer

en esta condición.

1. Realizar el diagrama de espacio fase.
2. Confeccionar el listado de instrucciones o realizar la misma programación con

lógica de escalera.

79EJERCICIOS DE APLICACIÓN9

< <

Ejercicio 2

• Presentar las instrucciones LD y STR dentro de un problema particular.
• Mostrar que la instrucción STR sólo activa la salida mientras la entrada esté presente.
• Mostrar el funcionamiento de una válvula 5/2 mando eléctrico reacción resorte y

de un cilindro de doble efecto.

Planteo

Se desea implementar un desvío sobre una cinta transportadora de alimentos.
El dispositivo deberá trabajar de la siguiente manera:

• Cuando un trabajador presione un pulsador el desvío deberá activarse.
• Cuando el trabajador suelte o deje de presionar el pulsador el desvío deberá

cambiar nuevamente la dirección.

Ejercicio 3

Objetivo: reconocer la necesidad de señales simultáneas para la ejecución de una acción.

Planteo

• Se ha pensado en un sistema para el control de arranque de una máquina, la cual es
gobernada desde 2 puntos diferentes (1) y (2), con las siguientes condiciones:

• Si en los puntos (1) y (2) no existe accionamiento, la máquina no arrancará.
• Si en el punto (1) hay accionamiento y en el punto (2) no hay, la máquina

continuará apagada.
• Si ocurre al revés también la máquina continuará apagada.
• Si los dos puntos (1) y (2) están accionados, la máquina arrancará.

1. Realizar un diagrama eléctrico del problema.
2. Realizar un programa con lógica de escalera y con listado de instrucciones para

poder arrancar la máquina.

Ejercicio 4

Objetivo: reconocer la posibilidad de usar distintas señales para la ejecución de una
acción (condición “O”)

Planteo

Se desea implementar una alarma luminosa en una máquina como señal de llamado
al departamento de mantenimiento y se quiere accionar la misma con dos pulsadores
siempre que su accionamiento cumpla con los requisitos siguientes:

• Si ninguno de los pulsadores se activa la alarma estará apagada.
• Si uno de los pulsadores se activa la alarma se encenderá.
• Si los dos pulsadores se activan simultáneamente, la alarma se encenderá.

1. Realizar un diagrama eléctrico del problema. Realizar un programa con lógica de
escalera y con listado de instrucciones para solucionar el problema (LD, LD, STR)

MICRO80

<

Ejercicio 5

Objetivo: reconocer la posibilidad de usar distintas señales para la ejecución de una
acción (condición “O”)

Planteo

Se deberá provocar la salida de un cilindro, para lo cual han de emplearse los inte-
rruptores 1, 2, y 3. Este movimiento se deberá ejecutar si se cumplen las condiciones
siguientes:

• Si el interruptor está accionado y los dos restantes no lo están.
• Si los interruptores 2 y 3 están accionados y el interruptor 1 no lo está.

1. Realizar un diagrama eléctrico del problema. Realizar un programa con lógica de
escalera y con listado de instrucciones para poder dar solución al problema planteado.

Ejercicio 6

Objetivo: conocer el uso de enclavamientos, de las instrucciones SET y RESET y
manejar el diagrama de espacio fase.

Planteo

En un silo contenedor de granos se ha instalado un cilindro neumático para ejecutar
la función de apertura y cierre de la compuerta de suministro. La misma deberá tra-
bajar bajo las siguientes condiciones:

• El control de apertura de la compuerta se realizará por medio de un botón pulsador.
• El control de cierre de la compuerta se realizará con otro pulsador.

1. Realizar un diagrama espacio fase.
2. Realizar un circuito eléctrico que responda con lo pedido. Además, armar un pro-

grama con lógica de escalera y listado de instrucciones que cumpla con lo requerido.

Ejercicio 7

Objetivo: reconocer la posibilidad de usar distintas señales para la ejecución de una
acción (condición “O”)

Planteo

Ha sido instalado un cilindro neumático de doble efecto para la apertura y cierre de
la puerta de una cámara frigorífica. El mismo se tendrá que abrir con dos pulsadores:
uno dentro y el otro fuera de la cámara frigorífica con las siguientes condiciones:

• Ya sea dentro o fuera sólo existirá un botón que hará las dos funciones: la de
apertura y la de cierre.

• Para abrir la puerta, deberá estar completamente cerrada.
• Para cerrar la puerta, deberá estar completamente abierta.

81EJERCICIOS DE APLICACIÓN9

< <

Ejercicio 8

Objetivo: reconocer la posibilidad de usar señales, y señales negadas para la ejecu-
ción de una acción.

Planteo

Una gran máquina ha sido instalada en un piso de difícil acceso. Ella deberá ser
encendida y apagada desde dos puntos separados. El operador deberá ser capaz de
cambiar el estado en que se encuentra la máquina desde cualquiera de las dos loca-
lizaciones. Por ejemplo, si la máquina está funcionando, al cambiar de posición una de
las llaves ésta se detendrá.

Ejercicio 9

Objetivo: utilizar un sensor de final de carrera para retorno del cilindro neumático.

Planteo

En una máquina herramienta (taladro) se ha implementado una unidad de avance
oleo-neumática, para obtener una velocidad de trabajo lenta.
Se pretende que:

• La señal de avance será enviada por el operador por medio de un pulsador.
• Cuando el vástago alcance su final de carrera, el retorno deberá efectuarse en

forma automática.

1. Realizar un diagrama espacio - fase.
2. Realizar un circuito eléctrico que responda con lo pedido. Además, armar un pro-

grama con lógica de escalera y listado de instrucciones que cumpla con lo requerido.

Ejercicio 10

Se observa que al mantener el botón de marcha presionado el cilindro cabecea. Se
requiere que el movimiento del taladro sea completado aún si se mantiene el pulsa-
dor presionado.

MICRO82

<

Ejercicio 11

Realizar las siguientes secuencias con los cilindros de doble efecto, recordando que
se trata de válvulas monoestables:

A+ / B+ / A- / B-
A+ / B+ A- / B-
A+ / A- / B+ / B-
A+ / B+ / B- / A-
B+ /B- /A+ /B+ /B- /A-
GRAFCET. A+ / A-
A+ luz roja / A-
A+ luz roja / A- luz amarilla
A+ luz roja / A- luz amarilla / luz verde cuando esté en reposo
A+ / B+ / A- / B-
A+ / B+ A- / B-
A+ / A- / B+ / B-
A+ / B+ / B- / A-
B+ /B- /A+ /B+ /B- /A-

Para todos los casos realizar el diagrama de espacio fase.

Ejercicio 12

Objetivo: mostrar el uso de la instrucción PUT para realizar ciclos repetitivos.

Planteo

Presionar el botón de marcha para ejecutar el ciclo A+, A- continuamente y detener
el ciclo presionando el botón de parada.

Ejercicio 13

Objetivo: reconocer el uso de la instrucción de temporización y de la instrucción de
flancos.

Planteo

• Encender una luz durante cinco segundos.
• Prender en el siguiente orden: la luz roja 5 segundos, la amarilla 5 segundos, la

verde 5 segundos.
• Prender en el siguiente orden: la luz roja 5 segundos, la roja y la amarilla otros 5

segundos, y luego la roja, la amarilla y la verde otros 5 segundos.

1. Realizar el ejercicio con un equivalente eléctrico, con lógica de escalera y con
Grafcet.

83EJERCICIOS DE APLICACIÓN9

< <

Ejercicio 14

Objetivo: reconocer el uso de las divergencias OR y AND.

Planteo

Se pretende seleccionar uno u otro cilindro. Para ello se cuenta con un pulsador de mar-
cha, uno de parada y una llave selectora.
Con el botón de marcha y la llave, en uno activar la electroválvula que extiende el cilindro A.
Con la llave en cero y el botón de parada, activar la electroválvula que extiende el cilindro B.
Los retornos de ambos vástagos de cilindro deben producirse en forma automática una vez
que se alcancen su final de carrera extendido (DIVOR RDIV, CVOR)

Ejercicio 15

Objetivo: reconocer otros usos de la divergencia en OR.

Planteo

Se pretende que un cilindro A ejecute un ciclo automático y continuo de salida y
entrada de vástago, desde que se pulsa el botón de marcha hasta que se presione el
de parada.

Ejercicio 16

Objetivo: uso de la divergencia en OR.

Planteo

Un móvil se desliza a través de un husillo movido por un motor de doble sentido de
giro, para lo cual llevará un contactor a0 que lo conecta para que gire a derecha y otro
a1 para que gire a la izquierda. El móvil debe realizar un movimiento de vaivén conti-
nuado, a partir del momento en que el sistema recibe la orden de impulso de puesta
en marcha.
Un pulso de parada deberá detener el motor, pero no en el acto, sino al final del movi-
miento de vaivén ya iniciado.
Un pulso de emergencia debe producir el retroceso inmediato del móvil a la posición
de origen, y el sistema no podrá ponerse en marcha de nuevo con PM si previamen-
te no se ha accionado el pulsador de rearme.

MICRO84

<

Ejercicio 17

Objetivo: reconocer el uso de la divergencia en AND.

Planteo

Una pulsación de PM (pulsador de marcha) debe provocar la apertura de las dos com-
puertas. Cuando la aguja de la pesadora llegue a L1 debe desactivarse C1, cerrando la
compuerta correspondiente. Cuando la aguja llegue a L2 deberá desactivarse D1,
cerrándose la compuerta de afinado. Vaciado el contenido de la pesadora por medio de
un basculante, ésta volverá a la posición de reposo sin que el paso de la aguja por delan-
te de L1 provoque efecto alguno. Pulsando de nuevo PM se inicia un nuevo ciclo.

Al accionar el pulsador de emergencia se deberán cerrar las dos compuertas en cual-
quier momento del ciclo y éste se parará. Para reanudarlo bastará con pulsar el rear-
me. El ciclo deberá continuar en la fase en que se interrumpió. Si durante el ciclo se
pulsase P, no deberá alterarse aquél.

En la figura se ilustra el proceso a automatizar.
Las compuestas son accionadas por cilindros de doble efecto, mientras que el bas-
culante es accionado por un cilindro de simple efecto.

Ejercicio 18

Objetivo: aprender el uso de los contadores, comparador. Descubrir que es posible activar
una salida o variable interna a través del comparador con las instrucciones STR, TMR, DIF
y PUT.

Planteo

Presionar tres veces el pulsador de marcha para encender la luz roja durante 5 segundos.
Volver el contador a cero con el botón de parada.
Lo mismo que en el ejercicio anterior, pero evitar que si se sigue presionado el botón
de marcha el contador continúe el conteo. Bloquear el contador cuando éste llega al
valor deseado.

85MICRO10

< <

Se entregan con una base de montaje en estructuras de perfiles de aluminio anodi-
zados, y un exclusivo sistema de fijación de elementos de ajuste manual de un cuar-
to de vuelta que permita su fácil re-ubicación o cambio, facilitando la tarea didáctica
del capacitador y la asimilación de conceptos de los asistentes.

En cuanto a las posibilidades de expansión, se han contemplado diferentes módulos
que permiten migrar de un modelo básico y llegar a implementar hasta un poderoso
Centro de Estudio y Ensayo que incluya PC, interfaces para accionamiento de actua-
dores, mobiliario, etc., cubriendo variadas tecnologías complementarias.

Material didáctico

Micro Capacitación realiza y comercializa una variedad de elementos didácticos de
gran flexibilidad, fácil montaje y re-ubicación o cambio, con posibilidades de expan-
sión con módulos que permiten partir de un modelo básico, y terminar en un podero-
so centro de estudio y ensayo.

Paneles serie DIDACTO
Estos paneles están enteramente diseñados por MICRO en un desarrollo comparti-
do por nuestros especialistas de Capacitación y de Ingeniería. Los componentes que
se utilizan para su construcción son los mismos que adopta la industria de todo el
mundo para la implementación de sus automatismos en una amplia gama de aplica-
ciones y complejidades.

MICRO86

<

Cursos
Micro Capacitación cubre un extenso rango de temarios en los cursos que dicta en
sus aulas que, para tal efecto, posee en su edificio central. Pero también atiende los
requerimientos de la Industria y las instituciones educativas trasladándose con su
laboratorio móvil a las ciudades del interior, y otros países.

Software

Los softwares utilizados tienen como misión amalgamar la potencialidad de la infor-
mática aplicada a la enseñanza de automatización. Puede clasificarse en:

1. Softwares de simulación, que pueden diseñar,
ensayar y simular circuitos que incluyan componen-
tes electrónicos, neumáticos e hidráulicos.

2. Softwares de cálculo, información técnica y
selección de componentes adecuados para
cada requisición técnica.

3. Softwares de presentaciones que, preparados
por nuestros ingenieros, optimizan las charlas y
las adecuan al medio al que van dirigidas.

Los referencia a los softwares de simulación, y con el fin de hacerlos interactivos, se
dispone de interfaces que permiten físicamente hacer actuar a los elementos que son
visualizados en el monitor de la computadora.

Material de soporte
Micro Capacitación dispone de variados elementos didácticos para facilitar la trans-
misión efectiva de los conceptos. Entre ellos se cuenta con componentes en corte,
simbología para pizarra magnética, manuales, videos, transparencias, etc.

